

Recent highlights on top-quark physics with the ATLAS detector

Wolfgang Wagner

Bergische Universität Wuppertal

HEP Seminar Michigan State University, December 8, 2020

The top quark

(Spin decorrelation time: 10^{-21} s for hadrons)

Recent highlights on top-quark physics with ATLAS

BERGISCHE UNIVERSITÄT WUPPERTAL

Top-quark-antiquark pair production

Predicted total cross-section: $\sigma = 832 + 20 - 30$ (scale) ± 35 (PDF and α_s) pb Relative uncertainty = 5.5%

... and more partonic top-quark processes

The top-quark realm

- Cross-sections of top-quark processes span 5 orders of magnitude!
- In 139 fb-1 (Run 2 data set):
 - O(100M) $t\bar{t}$ events
 - O(1k) $t\bar{t}t\bar{t}$ events

produced

Challenging the Standard Model with top quarks

Precision measurements of top-quark properties

PRECISION VS ACCURACY

Reduce statistical and systematic uncertainties!

BERGISCHE UNIVERSITÄT WUPPERTAL

	tī	tq	tW	tb	tŦW	tτΖ	tŦγ	tqZ	tŦH	tīttī	tWZ	tH	"rareness" of process σ^{-1}
Total cross- section	Y	Υ	Y	Y	Y	Υ	Y	Y	Y	Y			
Fiducial cross- sections	Y	Y	Y				Y			, ×6	arritory		
Asymmetries	Y	Y					· · · · · ·		Inche	rteo		· · · · · · · · · · · · · · · · · · ·	
Differential cross- sections	Y	Y	Y			Y	Y						

Complexity of analysis

Part 1

Evidence for four-top-quark production

and

Test of the universality of τ and μ lepton couplings in W-boson decays

Four top-quarks production

BERGISCHE UNIVERSITÄT WUPPERTAL

Very rare high- $p_{\rm T}$ scattering process:

In the SM at NLO (QCD and EWK corr.):

$\sigma(t\bar{t}t\bar{t}) = 12.0 \pm 2.4$ (scale) fb <u>JHEP 02 (2018) 031</u>

- SM process not yet observed!
- Sensitive to BSM physics, for example gluino pair production, two-Higgs-doublet models, contact interactions

Signatures and analysis channels

- 4-top-quarks final state contains 4 *W*-bosons: $W^+W^-W^+W^-$
- Categorize analysis channels according to W-boson decay modes: $W \rightarrow \ell \nu$ or $W \rightarrow q_1 \bar{q}_2$

- Channels with best signal-tobackground ratio:
 - > 2 leptons with same-charge
 - ≥ 3 leptons
- Other channels suffer from large $t\bar{t}$ + jets ($b\bar{b}$ and $c\bar{c}$) background

b

Background processes

Major: $t\bar{t}W$ +jets, $t\bar{t}Z$ +jets, $t\bar{t}H$ +jets, $t\bar{t}t$ Minor: $t\bar{t}WW$, tWZ, tZq ("Others")

Background control regions

Optimised signal-background separation

- Use Boosted Decision Tree (BDT) to separate signal from background events in the signal region (SR).
- Most important input variable: Sum of pseudo-continuous *b*-tagging score for all jets.

 Essentially counting *b*-jets in a clever way (signal has 4 b-jets). Shapes of the BDT discriminant in the SR (signal versus background)

15

Evidence for four-top-quarks production

BERGISCHE UNIVERSITÄT WUPPERTAL

Measured signal strength:

$$\mu(t\bar{t}t\bar{t}) = \frac{\sigma_{\text{meas}}}{\sigma_{\text{SM}}} = 2.0^{+0.9}_{-0.6}$$

Measured cross-section:

 $\sigma(t\bar{t}t\bar{t}) = 24 \pm 5 \text{ (stat)} ^{+5}_{-4} \text{ (syst) fb}$

predicted: $\sigma(t\bar{t}t\bar{t}) = 12.0 \pm 2.4$ fb

 Strong evidence of 4.3 s.d. (2.4 s.d. expected) for this very rare process!

Consistent to 1.7 s.d. with the SM prediction.

Eur. Phys. J. C 80 (2020) 1085 arXiv: 2007.14858

Top-quarks as a tool: a prime example

proton

"Do research with top quarks, not on top quarks."

Production of $t\bar{t}$ pairs is a copious source of on-shell *W*-boson pairs.

 W^+

Check universality of the weak coupling at *W* decay vertex by measuring:

A long standing open issue

BERGISCHE UNIVERSITÄT WUPPERTAL

 $R(\tau/\mu)$ measured at LEP II with W^+W^- pairs: discrepancy of 2.7 s.d. from 1 observed

Note:

Measurements of τ lifetime and branching ratios provide a very precise test of lepton-flavour universality at low energy:

$$\frac{g_{\tau}}{g_{\mu}} = 0.9999 \pm 0.0014$$

2nd, more recent motivation: B factories and LHCb find 3.1 s.d. discrepancy in

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}((B \to D^{(*)}\mu\nu))}$$

Analysis strategy

Measure τ leptons in their muon decay channel: $\tau \rightarrow \mu + \nu_{\mu} + \nu_{\tau}$

Uncertainties in muon reconstruction efficiencies largely cancel Transverse impact parameter $d_0(\mu)$ and

transverse momentum $p_{\rm T}(\mu)$

... to 2D distribution in $|d_0(\mu)|$ and $p_T(\mu)$ with 8 bins and 3 bins, respectively.

Treat electron-tagged and muon-tagged events separately.

• The normalisation of the two main backgrounds, non-prompt muons from hadron decays and $Z \rightarrow \mu\mu$ are determined in control regions.

Result on $R(\tau/\mu)$

Measured value:

$R(\tau/\mu) = 0.992 \pm 0.013$ [± 0.07 (stat) ± 0.011 (syst)]

arXiv: 2007.14040 Accepted by Nature Physics.

- Most precise measurement of $R(\tau/\mu)$ to date.
- Almost twice the precision of the LEP II measurement.

Another example for the LHC as a precision experiment!

Breakdown of uncertainties

Source	Impact on $R(\tau/\mu)$
Prompt d_0^{μ} templates	0.0038 🔵
$\mu_{(prompt)}$ and $\mu_{(\tau \to \mu)}$ parton shower variations	0.0036 🔴
Muon isolation efficiency	0.0033 🔵
Muon identification and reconstruction	0.0030 🔵
$\mu_{(had.)}$ normalisation	0.0028 🔵
$t\bar{t}$ scale and matching variations	0.0027 🔴
Top $p_{\rm T}$ spectum variation	0.0026 🔴
$\mu_{(had.)}$ parton shower variations	0.0021 🔴
Monte Carlo statistics	0.0018
Pile-up	0.0017
$\mu_{(\tau \to \mu)}$ and $\mu_{(had.)} d_0^{\mu}$ shape	0.0017 🔴
Other detector systematic uncertainties	0.0016
Z+jet normalisation	0.0009
Other sources	0.0004
$B(\tau \to \mu \nu_\tau \nu_\mu)$	0.0023
Total systematic uncertainty	0.0109
Data statistics	0.0072 🔵
Total	0.013

- Important uncertainties are of experimental nature (marked with).
 - \rightarrow improvements are possible with more data
- Improvements in modelling are less obvious and most likely longer term (marked with
).

Measurements of $t\overline{t} + X$ production with $X = \gamma$ and X = Z

Measuring $t\bar{t} + \gamma$ and $tW + \gamma$ production

BERGISCHE UNIVERSITÄT WUPPERTAL

Main aim: comparison of differential distributions to a dedicated NLO computation: JHEP 10 (2018) 158

- Full computation of the $pp \rightarrow be^- \bar{\nu}_e \bar{b} \mu^+ \nu_\mu$ final state
- Includes $t\bar{t} + \gamma$ and $tW + \gamma$ interference and off-shell effects of W bosons and top quarks

- Partonic phase space has large acceptance for photons from final-state radiation.
- Analysis is not optimised for sensing the $t\gamma$ electroweak coupling

BERGISCHE UNIVERSITÄT WUPPERTAL

Result: fiducial cross-section

 $\sigma_{\rm fid}(t\bar{t} + \gamma) = 39.6 \pm 0.8 \,({\rm stat}) \pm {}^{+2.6}_{-2.2} \,({\rm syst})$ fb *

 $\sigma_{\rm NLO}(t\bar{t} + \gamma) = 38.5 \pm {}^{+0.56}_{-2.18}(\text{scale}) \pm {}^{+1.04}_{-1.18}(\text{PDF}) \text{ fb}$

Excellent agreement!

JHEP 09 (2020) 049

Differential cross-sections: Unfolding

Absolute differential cross-sections

- Measured distributions: $p_{\rm T}(\gamma)$, $|\eta(\gamma)|$, $\Delta R(\gamma, \ell)_{\rm min}$, $\Delta \phi(e, \mu)$, $|\Delta \eta(e, \mu)|$
- Uncertainties at the 10% level.
- Good agreement with NLO prediction!

Normalised differential cross-sections

BERGISCHE UNIVERSITÄT WUPPERTAL

- Uncertainties slightly below 10%.
- Distributions of $p_{T}(\gamma)$, $|\eta(\gamma)|$, $|\Delta\eta(e,\mu)|$ are well modelled by the fixed-order prediction and MG5_aMC@NLO.

	p_{T}	$\gamma(\gamma)$	$ \eta $	(γ)	$\Delta R(\gamma$	$(\ell,\ell)_{\min}$	$\Delta \phi$	(ℓ,ℓ)	$ \Delta \eta $	$[\ell,\ell) $
Predictions	χ^2/ndf	<i>p</i> -value	χ^2/ndf	p-value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Pythia8)	6.3/10	0.79	7.3/7	0.40	20.1/9	0.02	30.8/9	< 0.01	6.5/7	0.48
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Herwig7)	5.3/10	0.87	7.7/7	0.36	18.9/9	0.03	31.6/9	< 0.01	6.8/7	0.45
Theory NLO	6.0/10	0.82	4.5/7	0.72	13.5/9	0.14	5.8/9	0.76	5.6/7	0.59

Normalised differential cross-sections

BERGISCHE UNIVERSITÄT WUPPERTAL

- fixed-order calculation. <u>dσ</u> d Δφ(*l*,*l*) nin $\frac{1}{\sigma} \cdot \frac{d\sigma}{d \Delta R(\gamma, l)}$ ATLAS Unfolded data √s = 13 TeV. 139 fb ttv+tWγ (MG5_aMC+Pythia8) $\sqrt{s} = 13 \text{ TeV}$. 139 fb⁻ ty+tWy (MG5 aMC+Pythia8 Normalised cross-section .4 Normalised cross-section ttv+tWγ (MG5 aMC+Herwig7) +tWγ (MG5 aMC+Herwig7) eμ Theory NLO Theory NLO 0.8 Stat ⊕ Svst 0.6 0.8 0.6 0.4 0.4F 0.2 0.2F .5 Pred./Data Pred./Data UN 1.35 N/V 1.35 1 0.65 Theory/MC 1.5 2.53.52.5 4.5 ٦ 0 0.5 1.5 2 3 $\Delta R(\gamma, l)_{mir}$ $\Delta \phi(I,I)$
 - $\Delta \phi(e, \mu)$ is sensitive to $t\bar{t}$ spin correlations.
 - In $t\bar{t}$ production $\Delta\phi$ is neither well described by NNLO fixed-order calculations nor by MC generators.

	p_{T}	$\gamma(\gamma)$	$ \eta $	(γ)	$\Delta R(\gamma$	$(\ell, \ell)_{\min}$	$\Delta \phi$	(ℓ,ℓ)	$ \Delta\eta $	$(\ell,\ell) $
Predictions	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Pythia8)	6.3/10	0.79	7.3/7	0.40	20.1/9	0.02	30.8/9	< 0.01	6.5/7	0.48
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Herwig7)	5.3/10	0.87	7.7/7	0.36	18.9/9	0.03	31.6/9	< 0.01	6.8/7	0.45
Theory NLO	6.0/10	0.82	4.5/7	0.72	13.5/9	0.14	5.8/9	0.76	5.6/7	0.59

Distributions of $\Delta R(\gamma, \ell)_{\min}$ and $\Delta \phi(e, \mu)$ not well modelled by MG5_aMC@NLO but well described by

A word on the uncertainty breakdown

Inclusive cross-section

Category	Uncertainty
$t\bar{t}\gamma/tW\gamma$ modelling	3.8%
Background modelling	2.1%
Photons	1.9%
Luminosity	1.8%
Jets	1.6%
Pile-up	1.3%
Leptons	1.1%
Flavour-tagging	1.1%
MC statistics	0.4%
Soft term $E_{\rm T}^{\rm miss}$	0.2%
$tW\gamma$ parton definition	2.8%
Total syst.	6.3%

Differential cross-sections

- Statistical uncertainties are still sizeable
- More data will help (see projections for HL-LHC: <u>ATL-PHYS-PUB-2018-049</u>)
- Other systematics: experimental, signal and background modelling are at a similar level

Total and differential cross-sections of $t\overline{t} + Z$ production

- Probe the *tZ* coupling at high scales (LEP I probed top-quarks in loops)
- Sensitive to modifications in electroweak symmetry breaking mechanism

- Selection targets $Z \rightarrow e^+e^- / \mu^+\mu^-$ and $t\bar{t} \rightarrow b\bar{b}\ell^+\nu\ell^-\bar{\nu} / b\bar{b}\ell^\pm\nu jj$ decay channels
- Define 3-lepton and 4-lepton signal regions with p_T thresholds:
 3-lepton: p_T(l) > 27, 20, 20 GeV
 4-lepton: p_T(l) > 27, 20, 10, 7 GeV

Low $p_{\rm T}$ thresholds correspond to large acceptance! Still room for improvement in the 3-lepton channel.

- Z-mass window requirement: $|m(\ell^+\ell^-) m_Z| < 10 \text{ GeV}$
- Requirements on N_{jets} and N_{b-jets}

Total cross-section measurement

Profile maximum-likelihood fit to event yields in 6 signal regions and 2 control regions

Breakdown of uncertainties

Uncertainty	$\Delta \sigma_{t\bar{t}Z} / \sigma_{t\bar{t}Z}$ [%]
$t\bar{t}Z$ parton shower	3.1
tWZ modelling	2.9
b-tagging	2.9
WZ/ZZ + jets modelling	2.8
tZq modelling	2.6
Lepton	2.3
Luminosity	2.2
$\text{Jets} + E_{\text{T}}^{\text{miss}}$	2.1
Non-prompt/fake leptons	2.1
$t\bar{t}Z$ A14 tune	1.6
$t\bar{t}Z \ \mu_{\rm f}, \ \mu_{\rm r} \ {\rm scales}$	0.9
Other backgrounds	0.7
Pile-up	0.7
$t\bar{t}Z$ PDF	0.2
Total systematics	8.4
Data statistics	5.2
Total	9.9

- Systematic uncertainties dominate, but there is still some room to bring down the statistical uncertainty.
- Modelling uncertainties are important, in total 6.0%.

LHC $t\bar{t} + X$ Summary plot

Differential cross-sections

- Unfolding to parton level and particle level (stable particles in Monte Carlo event generators).
- Absolute and normalised cross-sections.
- Considered variables:

	Variable	Definition						
+ 4 ℓ	p_{T}^{Z}	Transverse momentum of the Z boson						
3 <i>l</i> -	$ y^{Z} $	Absolute value of the rapidity of the Z boson						
	N _{jets}	Number of selected jets with $p_{\rm T} > 25 \text{GeV}$ and $ \eta < 2.5$						
$\boldsymbol{\ell}$	$p_{\mathrm{T}}^{\ell,\mathrm{non}-Z}$	Transverse momentum of the lepton which is not associated with the Z boson						
G)	$ \Delta \phi(Z, t_{\text{lep}}) $	Azimuthal separation between the Z boson and the top quark (antiquark) featuring the $W \rightarrow \ell \nu$ decay						
	$ \Delta y(Z, t_{\text{lep}}) $	Absolute rapidity difference between the Z boson and the top quark (antiquark) featuring the $W \rightarrow \ell v$ decay						
	N _{jets}	Number of selected jets with $p_{\rm T} > 25 \text{GeV}$ and $ \eta < 2.5$						
4ℓ	$ \Delta \phi(\ell_t^+,\ell_{\bar{t}}^-) $	Azimuthal separation between the two leptons from the $t\bar{t}$ system						
	$ \Delta \phi(t\bar{t},Z) $	Azimuthal separation between the Z boson and the $t\bar{t}$ system						
	$p_{\mathrm{T}}^{tar{t}}$	Transverse momentum of the $t\bar{t}$ system						

 $p_{\mathrm{T}}(Z)$ and |y(Z)|

2.5

Shows relative large deviations in 3 bins, but no trend.

 $|\Delta \phi(Z, t_{\text{lep}})|$ and $|\Delta y(Z, t_{\text{lep}})|$

Uncertainties of differential measurements

- Uncertainties are at the level of 10 to 20%.
- Statistical uncertainties clearly dominate.
- Next iteration of the analysis is in preparation:
 - Will focus on an interpretation in Effective Field Theory (EFT)
 - Implement improvements in lepton identification and lower $p_{\rm T}$ thresholds for leptons.

Part 3

Differential cross-sections of $t\bar{t}$ production

Three analyses covering three main channels

Channel	eμ	e∕ <i>µ</i> + jets	all hadronic
Publication	Eur. Phys. J. C 80 (2020) 528	Eur. Phys. J. C 79 (2019) 1028	arXiv: 2006.09274
HEPData	<u>ins1759875</u>	Record: 95748	Not available
Background level	9%	11%	30%
Main backgrounds	tW production	tW, W + jets and multijet production	Multijet production
Topology	leptonic variables only	Resolved and boosted $t\bar{t}$ system reconstructed	Resolved only $t\bar{t}$ system reconstructed
Unfolding method	Bin-by-bin	Iterative Bayesian	Iterative Bayesian

- All analysis use an integrated luminosity of 36 fb⁻¹ recorded in 2015 and 2016.
- Analyses are complementary in various ways: background composition, background level, topology, access to the tt
 t t system and resolution.

Disclaimer: Today: Will not discuss the experimental details, but compare main results.

Objectives

Recent highlights on top-quark physics with ATLAS Wolfgang Wagner

Predictions

- Generator setups: Use NLO matrix-element (ME) generator matched to a parton-shower generator
- Nominal setup: Powheg-Box ver. 2 (PWG) + Pythia 8.210 (PY8)

• Scales:
$$\mu_{\rm R} = \mu_{\rm F} = \sqrt{m_t^2 + p_{\rm T}(t)^2} =: \mu_{\rm nomina}$$

- PDF set: NNPDF3.0NLO for the ME calculation, NNPDF2.3LO for the parton shower
- Matching scale: $h_{damp} = 1.5 m_t$
- Variant "Radiation up" with settings: $\mu_{\rm R} = \mu_{\rm F} = 0.5 \,\mu_{\rm nominal}$, $h_{\rm damp} = 1.5 \, m_t$, Var3c=Up of the A14 tune
- Variant "Radiation down" with settings: $\mu_R = \mu_F = 2.0 \ \mu_{nominal}$, Var3c=Down of the A14 tune
- PWG+Herwig 7
- MadGraph5_aMC@NLO (ver. 2.3.3.p1) + PY8
- Sherpa 2.2.1, 1st emission at NLO, up to 4 additional parton emissions at LO
- Fixed-order calculations at NNLO by M. Czakon and A. Mitov et al.
- <u>Caveat</u>: Quantitative comparisons with the predictions (χ^2 /d.o.f. and p-values) do not include uncertainties in the predictions.

Top quark $p_{\rm T}(t)$

- $p_{\rm T}(\ell)$ related to $p_{\rm T}(t)$
- None of the generators describes the data well, but MG5aMC does better than PWG
- Both PWG+PY8 and the NNLO FO calculation model $p_{\rm T}(t)$ well.

Recent highlights on top-quark physics with ATLAS Wolfgang Wagner

800

cross-section at high $p_{\rm T}(t)$.

MG5aMC and PWG+H7 do

better than the nominal

PWG+PY8 and Sherpa.

Rapidity of the $t\bar{t}$ system: $|y(t\bar{t})|$

- All generator setups show a trend to lower cross-sections at high |y(tt̄)|.
 ⇒ parton shower and ME generator may be not the driving issue
- No trend visible.

 Uncertainties are too large to draw conclusions

$|y(e\mu)|$ for different PDFs

With MG5aMC the CT10 PDF set gives a better description of the data than the default NNPDF3.0NLO and HERAPDF2.0.

0.95

Mass of the $t\bar{t}$ system: $m(t\bar{t})$

- Distribution is badly described by PWG+PY8 (p-value = 6×10^{-6})
- MG5aMC+PY8 does better (p-value =0.049)
- Distribution is badly described by PWG+PY8 and all other MC setups (not shown)
- χ^2 /d.o.f. = 32.1/8
- P-value < 0.01

Within the large uncertainties the modelling is acceptable.

3000

- With MG5aMC the CT10 PDF set gives a slightly better description (p-value = 0.11) of the data than the default NNPDF3.0NLO (p-value =0.049) and HERAPDF2.0 (p-value = 6×10⁻³).
- This study demonstrates sensitivity of the measurements to the PDFs.
- Good motivation to be included in PDF fits.

Summary

- ATLAS is exploiting the full statistical power of the Run 2 data set.
- Recent highlights in the top-quark sector:
 - Evidence for 4-top-quarks production
 - Test universality of $W\tau$ and $W\mu$ weak couplings
 - Differential cross-section measurements of $t\bar{t} + \gamma$ and $t\bar{t} + Z$ production
 - Comprehensive measurements of differential cross-sections of $t\bar{t}$ production

