

Search for flavour-changing neutral-current interactions of a top quark and a gluon with the ATLAS detector in *pp* collisions at $\sqrt{s} = 13$ TeV

DPG Frühjahrstagung 2022 March 21, 2022

Dominic Hirschbühl, Gunnar Jäkel and Wolfgang Wagner

- arXiv: <u>2112.01302</u>
- Accepted by Eur. Phys. J. C
- Public web page: <u>TOPQ-2018-06</u> including auxiliary material

Research supported by:

Flavour-changing neutral currents (FCNC)

• The SM does not include FCNC at tree (Born) level.

FCNC exist at loop level, but they are strongly suppressed by the GIM mechanism (CKM unitarity).

Top-Quark FCNC in BSM models and ...

... current experimental limits

Some 2HDM with flavour-violation predict $\mathcal{B}(t \to gc)$ as large as 10^{-4} .

BERGISCHE UNIVERSITÄT WUPPERTAL

- Process also called *direct* top-quark production.
- Consider *ugt* and *cgt* processes.
- Experimental signature
 - > 1 single *b*-jet
 - > 1 charged high- $p_{\rm T}$ lepton (electron or muon)
 - \succ Large $E_{\rm T}^{\rm miss}$

Event selection and validation regions

Observable	Common requirements				
$n_{\text{Tight}}(e) + n_{\text{Medium}}(\mu)$	= 1				
$n_{\text{Loose}}(e) + n_{\text{Loose}}(\mu)$	= 1				
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 30 GeV				
$m_{\mathrm{T}}\left(W ight)$	> 50 GeV				
n(j)	≥ 1				
$p_{\mathrm{T}}\left(\ell ight)$	$> 50 \mathrm{GeV} \cdot \left(1 - \frac{\pi - \Delta \phi(j_1, \ell) }{\pi - 1}\right)$				
	Analysis regions				
	SR	W+jets VR	tī VR	tq VR	
$n(\eta(j) < 2.5)$	= 1	= 1	= 2	= 1	
n(b)	= 1	= 1	= 2	= 1	
ϵ_b	30%	60% (veto 30%)	30%	30%	
$n(\eta(j) > 2.5)$	≥ 0	≥ 0	≥ 0	= 1	
$D_{1(2)}$	_	$0.3 < D_{1(2)} < 0.6$	_	$0.2 < D_{1(2)} < 0.4$	

BERGISCHE UNIVERSITÄT WUPPERTAL

Estimation of the multijet background

- The rate of mis-identifying jets as charged leptons is not well described in simulation.
- The rate is determined in a data-driven way.
- The $E_{\rm T}^{\rm miss}$ (electrons) and $m_{\rm T}(W)$ (muons) distributions are fitted for estimating the rate of the multijet background.
- The shape is modelled with the jet-electron model (dijet MC with labelling jets electrons) and the anti-muon model (collision data with inverting some identification cuts).

BERGISCHE

UNIVERSITÄT WUPPERTAL

Background composition

BERGISCHE UNIVERSITÄT WUPPERTAL

... in the signal region (1-jet-1-*b*-tag):

Separating signal and background events

- BERGISCHE UNIVERSITÄT WUPPERTAL
- Train artificial neural networks (NeuroBayes package) to obtain discriminants separating signal and background.

- One network trained with the cgt process as signal: $\Rightarrow D_1$ discriminant, used for the cgt analysis and $\bar{u} + g \rightarrow \bar{t}$ signal of the ugt analysis (sea quarks in the initial state).
- The 2nd network is trained with $u + g \rightarrow t$ events:

 \Rightarrow D_2 discriminant

- Evaluate modelling of input variables in validation regions (VRs) and evaluate discriminants in these regions.
- The tq VR and the W + jets VR is defined by using the discriminants D_1 and D_2 .

Result of the maximum likelihood fit

ugt analysis

 D_2

Process	μ
W + jets	$1.19\substack{+0.15 \\ -0.14}$
$c+g \rightarrow t$	$0.15\substack{+0.19 \\ -0.14}$

Process	μ
W^+ + jets	$1.25\substack{+0.15 \\ -0.14}$
W^- + jets	$1.32\substack{+0.17\\-0.16}$
$u + g \rightarrow t$	$0.10\substack{+0.19 \\ -0.17}$

Search for FCNC interactions of a top quark and a gluon with the ATLAS detector Wolfgang Wagner

Process	Pre-fit	Post-fit <i>cgt</i>	Post-fit <i>ugt</i>
<i>ugt</i> FCNC process	0	0	1200 ± 2100
cgt FCNC process	0	4100 ± 4500	0
tq	138600 ± 9300	149200 ± 9400	150000 ± 10000
$t\bar{t}, tW, t\bar{b}$	179000 ± 17000	179000 ± 14000	175200 ± 9700
W+jets	229000 ± 30000	281000 ± 21000	292000 ± 18000
Z+jets, VV	29700 ± 6000	30000 ± 6000	29800 ± 6000
Multijet	47000 ± 14000	45000 ± 14000	40000 ± 12000
Total	650000 ± 46000	688600 ± 2400	688700 ± 3500
Observed	688 380	688 380	688 380

Fitted signal yields are compatible with zero!

Zoom-in plots with excluded signal contribution

ATLAS

SR plus

Post-Fit

√s = 13 TeV, 139 fb

Data

tq,tq

 $ug \rightarrow t$ FCNC normalised to the observed upper limit

W+jets

Multijet

 $ug \rightarrow t FCNC$

tt,tW,tb,tb

Z+jets, VV

Uncertainty

BERGISCHE UNIVERSITÄT WUPPERTAL

ugt analysis

20000 2000

18000 Events/

14000

12000

10000

8000

6000

4000

2000

D₁

8.7

0.75

0.8

0.85

0.9

0.95

 D_2

1

Cross-section limits

- BERGISCHE UNIVERSITÄT WUPPERTAL
- No significant excess observed \rightarrow upper limits on $\sigma(ug \rightarrow t) \times \mathcal{B}(t \rightarrow Wb) \times \mathcal{B}(W \rightarrow \ell \nu)$

CLs method

Test statistic

thod

$$\tilde{q}_{\mu} = \begin{cases} -2\ln\left(\frac{\mathcal{L}\left(\mu,\hat{\vec{\theta}}(\mu)\right)}{\mathcal{L}\left(0,\hat{\vec{\theta}}(0)\right)}\right) & \text{if } \hat{\mu} < 0, \\ -2\ln\left(\frac{\mathcal{L}\left(\mu,\hat{\vec{\theta}}(\mu)\right)}{\mathcal{L}\left(\hat{\mu},\hat{\vec{\theta}}\right)}\right) & \text{if } 0 \le \hat{\mu} \le \mu, \\ 0 & \text{if } \hat{\mu} > \mu. \end{cases}$$

• Observed upper limits:

$$\sigma(ugt) \times \mathcal{B}(t \to Wb) \times \mathcal{B}(W \to \ell\nu) < 3.0 \,\mathrm{pb}$$

$$\sigma(cgt) \times \mathcal{B}(t \to Wb) \times \mathcal{B}(W \to \ell\nu) < 4.7 \,\mathrm{pb}$$

Expected limits: 2.4 pb and 2.5 pb, respectively.

Interpretation in an EFT

BERGISCHE UNIVERSITÄT WUPPERTAL

Use the TopFCNC model based on the FeynRules 2.0 framework inside MadGraph5_aMC@NLO to interpret the cross-section limits in the context of an effective field theory.

Based on the model we establish the relations (@ NLO):

$$\sigma(u+g \to t) = 2773 \times \left(\frac{C_{uG}^{ut}}{\Lambda}\right)^2 \text{ pb TeV}^2 \qquad \sigma(c+g \to t) = 719 \times \left(\frac{C_{uG}^{ct}}{\Lambda}\right)^2 \text{ pb TeV}^2$$

These relations lead to limits on the EFT coefficients:

$$\frac{|C_{uG}^{ut}|}{\Lambda^2} < 0.057 \,\text{TeV}^{-2} \quad \text{and} \quad \frac{|C_{uG}^{ct}|}{\Lambda^2} < 0.14 \,\text{TeV}^{-2} \quad \text{at the 95\% CL.}$$

The EFT (arXiv: 1412.7166) is further used to predict $\mathcal{B}(t \to q + g) = 0.0186 \times \left(\frac{C_{uG}^{qt}}{\Lambda}\right)^2 \text{TeV}^2$
branching ratios of FCNC decays:

Limits on the branching ratios:

$$\mathcal{B}(t \to u + g) < 0.61 \times 10^{-4}$$
 and $\mathcal{B}(t \to c + g) < 3.7 \times 10^{-4}$

New results improve previous ATLAS limits by approximately a factor of 2.

Conclusions

σ Search for FCNC interactions of a top quark and gluon with the ATLAS detector Wolfgang Wagner

No significant excess of

 $ug \rightarrow t$ or $cg \rightarrow t$ events is observed. \hookrightarrow upper limits on production cross sections \Leftrightarrow limits on EFT coefficients $|C_{uG}^{ut}|$ and $|C_{uG}^{ut}|$ \Leftrightarrow limits on branching ratios

$$\mathcal{B}(t \to u + g) < 0.61 \times 10^{-4}$$
 and $\mathcal{B}(t \to c + g) < 3.7 \times 10^{-4}$

- ATLAS limits from 8 TeV analysis are improved by a factor of 2.
- Sensitivity limited by systematic uncertainties.

 \hookrightarrow need a new strategy to improve limits in the future

• Looks at $pp \to t\bar{t} \to \ell^+ \nu b + \bar{u}g$?

Backup: Modelling of input variables

Wolfgang Wagner

Scenario	Description	$\mathcal{B}_{95}^{\exp}(t \to u + g)$	$\mathcal{B}_{95}^{\exp}(t \to c + g)$
(1)	Data statistical only	1.1×10^{-5}	2.4×10^{-5}
(2)	Experimental uncertainties only	3.1×10^{-5}	12×10^{-5}
(3)	All uncertainties except MC statistical	3.9×10^{-5}	18×10^{-5}
(4)	All uncertainties	4.9×10^{-5}	20×10^{-5}

Experimental and modelling uncertainties contribute to the limitation of the sensitivity.