Search for flavour-changing neutral-current interactions of a top quark and a gluon with the ATLAS detector in $p p$ collisions at $\sqrt{s}=13 \mathrm{TeV}$

DPG Frühjahrstagung 2022 March 21, 2022

Dominic Hirschbühl, Gunnar Jäkel and Wolfgang Wagner

- arXiv: 2112.01302
- Accepted by Eur. Phys. J. C
- Public web page: TOPQ-2018-06 including auxiliary material

Erforschung von Universum und Materie

Flavour-changing neutral currents (FCNC)

- The SM does not include FCNC at tree (Born) level.

- FCNC exist at loop level, but they are strongly suppressed by the GIM mechanism (CKM unitarity).

	$B r(t \rightarrow q \gamma)$	$\operatorname{Br}(t \rightarrow q Z)$	$\operatorname{Br}(t \rightarrow q g)$
$q=u$	3.7×10^{-16}	8×10^{-17}	3.7×10^{-14}
$q=c$	4.6×10^{-14}	1×10^{-14}	4.6×10^{-12}

Top-Quark FCNC in BSM models and ...

Single top-quark production via top-gluon FCNC

- Process also called direct top-quark production.
- Consider ugt and cgt processes.
- Experimental signature
> 1 single b-jet
>1 charged high- p_{T} lepton (electron or muon)
\Rightarrow Large $E_{\mathrm{T}}^{\text {miss }}$

Event selection and validation regions

Estimation of the multijet background

- The rate of mis-identifying jets as charged leptons is not well described in simulation.
- The rate is determined in a data-driven way.
- The $E_{\mathrm{T}}^{\text {miss }}$ (electrons) and $m_{\mathrm{T}}(W)$ (muons) distributions are fitted for estimating the rate of the multijet background.
- The shape is modelled with the jet-electron model (dijet MC with labelling jets electrons) and the anti-muon model (collision data with inverting some identification cuts).

Background composition

BERGISCHE UNIVERSITÄT WUPPERTAL
... in the signal region (1-jet-1-b-tag):

Separating signal and background events

- Train artificial neural networks (NeuroBayes package) to obtain discriminants separating signal and background.

- One network trained with the cgt process as signal: $\quad \Rightarrow D_{1}$ discriminant, used for the cgt analysis and $\bar{u}+g \rightarrow \bar{t}$ signal of the ugt analysis (sea quarks in the initial state).
- The $2^{\text {nd }}$ network is trained with $u+g \rightarrow t$ events: $\quad \Rightarrow D_{2}$ discriminant

Evaluation of MC modelling

BERGISCHE UNIVERSITÄT WUPPERTAL

- Evaluate modelling of input variables in validation regions (VRs) and evaluate discriminants in these regions.
- The $t q \mathrm{VR}$ and the $W+$ jets VR is defined by using the discriminants D_{1} and D_{2}.

Result of the maximum likelihood fit

BERGISCHE UNIVERSITÄT WUPPERTAL
ugt analysis

Process	μ
$W^{+}+$jets	$1.25_{-0.14}^{+0.15}$
$W^{-}+$jets	$1.32_{-0.16}^{+0.17}$
$u+g \rightarrow t$	$0.10_{-0.17}^{+0.19}$

Post-fit event yield table

Process	Pre-fit	Post-fit cgt	Post-fit ugt
$u g t$ FCNC process	0	0	1200 ± 2100
$c g t$ FCNC process	0	4100 ± 4500	0
$t q$	138600 ± 9300	149200 ± 9400	150000 ± 10000
$t \bar{t}, t W, t \bar{b}$	179000 ± 17000	179000 ± 14000	175200 ± 9700
$W+$ jets	229000 ± 30000	281000 ± 21000	292000 ± 18000
$Z+$ jets, $V V$	29700 ± 6000	30000 ± 6000	29800 ± 6000
Multijet	47000 ± 14000	45000 ± 14000	40000 ± 12000
Total	650000 ± 46000	688600 ± 2400	688700 ± 3500
Observed	688380	688380	688380

Fitted signal yields are compatible with zero!

Zoom-in plots with excluded signal contribution

BERGISCHE UNIVERSITÄT WUPPERTAL

Cross-section limits

- No significant excess observed \rightarrow upper limits on $\sigma(u g \rightarrow t) \times \mathcal{B}(t \rightarrow W b) \times \mathcal{B}(W \rightarrow \ell v)$
CLs method $\quad \tilde{q}_{\mu}= \begin{cases}-2 \ln \left(\frac{\mathcal{L}(\mu, \hat{\vec{\theta}}(\mu))}{\mathcal{L}(0, \hat{\hat{\theta}}(0))}\right) & \text { if } \hat{\mu}<0, \\ -2 \ln \left(\frac{\mathcal{L}(\mu, \hat{\hat{\theta}}(\mu))}{\mathcal{L}(\hat{\mu}, \hat{\hat{\theta}})}\right) & \text { if } 0 \leq \hat{\mu} \leq \mu, \\ 0 & \text { if } \hat{\mu}>\mu .\end{cases}$
- Observed upper limits:

$$
\begin{aligned}
& \sigma(u g t) \times \mathcal{B}(t \rightarrow W b) \times \mathcal{B}(W \rightarrow \ell v)<3.0 \mathrm{pb} \\
& \sigma(c g t) \times \mathcal{B}(t \rightarrow W b) \times \mathcal{B}(W \rightarrow \ell v)<4.7 \mathrm{pb}
\end{aligned}
$$

Expected limits: 2.4 pb and 2.5 pb , respectively.

Interpretation in an EFT

Use the TopFCNC model based on the FeynRules 2.0 framework inside MadGraph5_aMC@NLO to interpret the cross-section limits in the context of an effective field theory.

Based on the model we establish the relations (@ NLO):

$$
\sigma(u+g \rightarrow t)=2773 \times\left(\frac{C_{u G}^{u t}}{\Lambda}\right)^{2} \mathrm{pb} \mathrm{TeV}^{2} \quad \sigma(c+g \rightarrow t)=719 \times\left(\frac{C_{u G}^{c t}}{\Lambda}\right)^{2} \mathrm{pb} \mathrm{TeV}^{2}
$$

These relations lead to limits on the EFT coefficients:

$$
\frac{\left|C_{u G}^{u t}\right|}{\Lambda^{2}}<0.057 \mathrm{TeV}^{-2} \quad \text { and } \quad \frac{\left|C_{u G}^{c t}\right|}{\Lambda^{2}}<0.14 \mathrm{TeV}^{-2} \quad \text { at the } 95 \% \mathrm{CL} .
$$

The EFT (arXiv: 1412.7166) is further used to predict $\quad \mathcal{B}(t \rightarrow q+g)=0.0186 \times\left(\frac{C_{u G}^{q t}}{\Lambda}\right)^{2} \mathrm{TeV}^{2}$
branching ratios of FCNC decays:
Limits on the branching ratios:

$$
\mathcal{B}(t \rightarrow u+g)<0.61 \times 10^{-4} \quad \text { and } \quad \mathcal{B}(t \rightarrow c+g)<3.7 \times 10^{-4}
$$

Conclusions

- No significant excess of
$u g \rightarrow t \quad$ or $\quad c g \rightarrow t \quad$ events is observed.
\rightarrow upper limits on production cross sections
\hookrightarrow limits on EFT coefficients $\left|C_{u G}^{u t}\right|$ and $\left|C_{u G}^{u t}\right|$
\hookrightarrow limits on branching ratios

$$
\mathcal{B}(t \rightarrow u+g)<0.61 \times 10^{-4} \quad \text { and } \quad \mathcal{B}(t \rightarrow c+g)<3.7 \times 10^{-4}
$$

- ATLAS limits from 8 TeV analysis are improved by a factor of 2.
- Sensitivity limited by systematic uncertainties.
\hookrightarrow need a new strategy to improve limits in the future
- Looks at $p p \rightarrow t \bar{t} \rightarrow \ell^{+} v b+\bar{u} \mathrm{~g}$?

Backup: Modelling of input variables

BERGISCHE UNIVERSITÄT WUPPERTAL

Limiting uncertainties (@ 13 TeV)

Scenario	Description	$\mathcal{B}_{95}^{\exp }(t \rightarrow u+g)$	$\mathcal{B}_{95}^{\exp }(t \rightarrow c+g)$
(1)	Data statistical only	1.1×10^{-5}	2.4×10^{-5}
(2)	Experimental uncertainties only	3.1×10^{-5}	12×10^{-5}
(3)	All uncertainties except MC statistical	3.9×10^{-5}	18×10^{-5}
(4)	All uncertainties	4.9×10^{-5}	20×10^{-5}

Experimental and modelling uncertainties contribute to the limitation of the sensitivity.

