Top-Quarks am LHC: das Standardmodell auf dem Prüfstand

Challenging the Standard Model with top quarks

Wolfgang Wagner Bergische Universität Wuppertal und ATLAS-Kollaboration

Seminar am Karlsruher Institut für Technologie 14. Januar 2020

Überblick

- 1) Die Rolle des Top-quarks im Standardmodell (SM)
- 2) Der Large Hadron Collider und der ATLAS-Detektor
- 3) Direkte Suchen nach neuen Teilchen
- 4) Indirekte Suchen / Suchen nach anomalen Kopplungen
- 5) Präzisionsmessungen von Top-Quark-Eigenschaften

Die Elementarteilchenphysik im Kosmos der Physik

Streuexperimente als Weg zur subnuklearen Physik

Wolfgang Wagner, Top-Quarks am LHC ...

Quarks and leptons

The Standard Model: a theory of interactions

Most remarkable feature of the SM:

Interactions (gauge fields) are predicted / derived as a consequence of local gauge symmetry!

$$\psi \to \exp(i\,\vec{\theta}(x_{\mu})\cdot\vec{a})\,\psi \qquad \lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \dots$$

Gauge symmetry: $SU(3)_C \times SU(2)_L \times U(1)_Y$

Gauge bosons mediate interactions

The Higgs boson

Potential of the Higgs field

$$V(\phi) = \frac{1}{2}\mu^2 \phi^{\dagger} \phi + \frac{1}{4}\lambda \left(\phi^{\dagger} \phi\right)^2$$

Discovery of the Higgs boson in 2012 and subsequent measurements confirm the Brout-Englert-Higgs mechanism as the source of the mass of elementary particles.

The top quark

• No bound states: τ_{top}

 $_{\rm b} \propto \left(\frac{M_W}{M_{\rm top}}\right)^3$

 $au_{ ext{top}}~pprox~4.7\cdot10^{-25}\, ext{s}$

Wolfgang Wagner, Top-Quarks am LHC ...

 \Rightarrow Top quark decays as a quasi free particle

 \Rightarrow Spin information and polarisation are accessible

(Spin decorrelation time: 10^{-21} s for hadrons)

Top-quarks in loops: Corrections to $Z \rightarrow b\overline{b}$

Top-quarks in loops: $B_{d(s)}^0 - \overline{B}_{d(s)}^0$ mixing

Tagged mixed = different flavour at production and decay

Tagged unmixed = same flavour at production and decay

- Loops with top-quarks lead to main contribution.
- If all quark masses were degenerate, the amplitudes would cancel each other.

The top-quark and the Higgs boson

$$V(\phi) = \frac{1}{2}\mu^2 \phi^{\dagger} \phi + \frac{1}{4}\lambda \left(\phi^{\dagger} \phi\right)^2$$
$$\lambda = \lambda(q^2)$$

- The Higgs self-coupling λ is not a constant.
- Loop corrections \rightarrow dependence on momentum scale μ
- Main contributions from top-quark

Wolfgang Wagner, Top-Quarks am LHC ...

Vacuum stability

• Condition for absolute stability of the potential: $\lambda(q^2) > 0$

Degrassi et al., JHEP 1208 (2012) 098, arXiv:1205.6497 [hep-ph].

Top-quark mass is important parameter (value and uncertainty).

High- p_T interactions in proton-proton collisions ...

... described in the parton model

Wolfgang Wagner, Top-Quarks am LHC ...

Top-quark-antiquark pair production

Relative uncertainty = 5.5%

... and more partonic top-quark processes

Chapter 2

The Large Hadron Collider and the ATLAS detector

Der Large Hadron Collider (LHC)

- Jeder Strahl hat ca. 2500 Protonenpakete
- 100 Milliarden Protonen pro Paket (klingt viel, aber 1 mol = 6 • 10²³)

- Der leistungsstärkeste Beschleuniger der Welt: im Tunnel am CERN mit 27 km Umfang
- Zwei gegenläufige Protonenstrahlen machen 10.000 Runden / Sekunde
- Kollisionen an 4 Punkten mit Rekordenergie von 13 TeV

Peak luminosity in 2018

Number of *pp* interactions per bunch crossing

Mean Number of Interactions per Crossing

The ATLAS detector

D712/mb-26/06/9

46 m long and 24 m high

Main components (= sub-detectors)

- Inner detector
 → tracks of charged particles
- Calorimeters
 - \rightarrow photons
 - \rightarrow electrons
 - \rightarrow hadronic jets (quarks and gluons)
- Muon system
 - \rightarrow muons
- Magnet systems

 → bending of charged particles

The ATLAS Pixel detector

- 4th layer installed in 2014.
- Radiation hard up to 2.4 × 10¹⁶ p/cm²

The ATLAS IBL Collaboration, *Production and Integration of the ATLAS Insertable B-Layer*, Journal of Instrumentation (JINST) 13 (2018) T05008, arXiv: 1803.00844.

- 3 to 4 precise track hits up to $|\eta| < 2.5$:
 - $R\Phi$ resolution: 10 μ m
 - η (or z) resolution: 115 μm
- 92 million pixel cells

IBL mounted on beam-pipe

21

The Insertable B-Layer (IBL)

3) Monitoring and control system

Designed and produced with vital contributions of the Wuppertal HEP group:

1) Mechanical support structures made of carbon fibre compounds

2) Readout and data acquisition system

Wolfgang Wagner, Top-Quarks am LHC ...

Secondary vertex reconstruction

- Important for top quark $(\mathcal{B}(t \rightarrow Wb) \approx 1)$ and Higgs boson physics Identification of
 - ➢ b-quark jets
 - \succ τ leptons
- Long liftetime:

τ (b-Hadron) ≈ 1.5 ps \rightarrow cτ ≈ 450 μm τ (τ-Lepton) ≈ 0.3 ps

Requirement of a secondary vertex:

→ strong reduction of the W + jets background in top-quark events

Impact parameter resolution is limited by multiple scattering:

$$\propto \sqrt{rac{x}{X_0}}$$
 Amount of material

 $\propto L$ Distance of the first measurement layer

Top-quark-antiquark pair candidate event ...

... with two reconstructed secondary vertices

CDF experiment at Fermilab

Flavour-tagging with multivariate techniques

- Use many discriminating features of *b*-jets, *c*-jets and light-jets to identify them.
- ATLAS Collaboration, ATLAS *b*-jet identification performance and efficiency measurement with $t\bar{t}$ events in pp collisions at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 79 (2019) 970, <u>arXiv:1907.05120</u>.

B-tagging improvements due to the IBL

Mis-identification of light-flavour jets and c-jets massively reduced for the same b-tagging efficiency.

Challenging the Standard Model with top quarks

Chapter 3

Direct searches for new particles (So-called on-shell production)

Warum "brauchen" wir neue Teilchen?

Offene Fragen der Elementarteilchenphysik

- Materie-Antimaterie-Asymmetrie im Universum
- Neutrinos haben Masse (Neutrinooszillationen)
- Natur der Dunklen Materie
- Kommensurabilität (Gleichheit von Proton- und Elektronladung)
- Große Vereinheitlichung der Kräfte
- Das Hierarchieproblem "Natürlichkeit" der Higgs-Massen-Skala

$$\frac{m_H}{m_H} \simeq 10^{-16} \text{ GeV}$$

^mPlanck

Unification Theories Electricity and magnetism are different manifestations of a unified "electromagnetic" force. Electromagnetism, gravity, and the unified force or interaction. Grand Unification and Superstring theories attempt to describe this unified force and make predictions which can be tested with the Tevatron. Electroweak Electromeagnetic force and make predictions the Tevatron.

Pair production of vector-like top quark partners (T)

Pair production cross section does not depend on any BSM couplings. It is pure QCD.

- T quarks have spin $\frac{1}{2}$
- Left-handed and right-handed states have the same electroweak coupling = no need to consider chiral states
- Avoids exclusion of a simple sequential 4th generation as obtained from Higgs production cross sections at the LHC.
- Contributions by T quarks dampen large quadratic corrections to the Higgs boson mass (propagator).

 \rightarrow Solution to the naturalness problem

Occur in Little Higgs or Composite Higgs models.

Search in the $T\overline{T} \rightarrow Zt + X$ with $Z \rightarrow \nu \overline{\nu}$ channel

<u>arXiv:1705.10751</u> JHEP 08 (2017) 052

Basic event selection:

- $E_{\rm T}^{\rm miss} > 300 {\rm ~GeV}$
- exactly 1 charged lepton (trigger)
- \geq 4 jets with (small) R = 0.4
- Re-cluster jets to large-R jets with R = 1.0:
 ≥ 2 large-R jets

$t\bar{t}$ control region with 30 GeV $\leq m_T(W) \leq 90$ GeV

Signal region

with $m_T(W) \ge 170 \text{ GeV}$

Region	SR
Observed events	7
Fitted bkg events	6.1 ± 1.9
Fitted $t\bar{t}$ events Fitted W + jets events Fitted singletop events Fitted $t\bar{t} + V$ events Fitted diboson events	2.5 ± 1.7 1.1 ± 0.7 1.1 ± 0.7 0.91 ± 0.20 0.6 ± 0.6
MC exp. bkg events	6.5

Exclusion limits on $T\overline{T} \rightarrow Zt + X$

- T quarks with $m_T < 1.16$ TeV are excluded if $\mathcal{B}(T \rightarrow Zt) = 100\%$ is assumed.
- Account for other decay modes $(T \rightarrow Ht \text{ and } T \rightarrow Wb)$:
 - \circ Singlet model: $m_T < 0.87 \text{ TeV}$
 - Doublet model: $m_T < 1.05 \text{ TeV}$

Indirect vs. direct Searches for New Physics

- No evidence (yet) for on-shell production of new particles.
- Lower limits are growing.
- Will (soon) face steep drop in parton luminosity.

Access higher mass scales by deviations in coupling measurements and search for rare processes.

A	TLAS Exotics S	earch	ies* -	95 %	6 CL	Ipper Exclusion Limits	ATLA	S Preliminar
Sta	atus: May 2019					$\int \mathcal{L} dt = (3.2 - 1)^{-1}$	139) fb ⁻¹	$\sqrt{s} = 8, 13 \text{ TeV}$
	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	Limit	·	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ - \\ 2 \ \gamma \\ multi-chann \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$\begin{array}{c} 1-4 \ j \\ \hline \\ 2 \ j \\ \geq 2 \ j \\ \geq 3 \ j \\ - \end{array}$ el $\begin{array}{c} 2 \ J \\ \geq 1 \ b, \geq 1 \ J \\ \geq 2 \ b, \geq 3 \end{array}$	Yes - - - 2j Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Ap 7.7 TeV n = 2 As 8.6 TeV n = 31 An 8.9 TeV n = 6 An 8.2 TeV n = 6 An 9.55 TeV n = 6 An 9.55 TeV n = 6 An 9.55 TeV n = 6 Ass 2.3 TeV k/Mpr Ass 1.6 TeV k/Mpr K mass 3.8 TeV Tier (1;	ILZ NLO $M_D = 3$ TeV, rot BH $M_D = 3$ TeV, rot BH = 0.1 = 1.0 = 1.0 15% $(\mathcal{A}^{(1,1)} \rightarrow tt) = 1$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02566 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{HVT } V' \to WZ \to qqqq \text{ model } B \\ \text{HVT } V' \to WH/ZH \text{ model } B \\ \text{LRSM } W_R \to tb \\ \text{LRSM } W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 1 \ e, \mu \\ 1 \ r, \mu \\ 1 \ \tau \\ B \\ 0 \ e, \mu \\ multi-chann \\ 2 \ \mu \end{array}$	- 2 b ≥ 1 b, ≥ 1J/ - 2 J el el 1 J	– – 2j Yes Yes –	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	' mass 5.1 TeV ' mass 2.42 TeV ' mass 2.1 TeV ' mass 3.0 TeV '' mass 3.0 TeV '' mass 3.0 TeV '' mass 3.7 TeV '' mass 3.6 TeV '' mass 3.6 TeV '' mass 3.2 TeV '' mass 3.6 TeV '' mass 3.2 TeV '' mass 3.25 TeV '' mass 5.0 TeV	1% $= 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.08299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl tttt	_ 2 e, μ ≥1 e,μ	2 j _ ≥1 b, ≥1 j	– – Yes	37.0 36.1 36.1	21. 2.57 TeV C _{4t} =	3 TeV η _{LL} 40.0 TeV η _{LL} 4π	1703.09127 1707.02424 1811.02305
MQ	Axial-vector mediator (Dirac DM) Colored scalar mediator (Dirac D $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac DM)	0 e, μ 0M) 0 e, μ 0 e, μ) 0-1 e, μ	$\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \\ 1 \ b, \ 01 \ J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	Instal 1.55 TeV g_q =0.25 Imad 1.67 TeV $g=1.0$ A. 700 GeV $m(\chi) < -1$ Image: Specific constraints $m(\chi) < -1$ $m(\chi) < -1$	$b, g_{\chi} = 1.0, m(\chi) = 1 \text{ GeV}$ $m(\chi) = 1 \text{ GeV}$ 150 GeV $b, \chi = 0.2, m(\chi) = 10 \text{ GeV}$	1711.03301 1711.03301 1608.02372 1812.09743
ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes – Yes	36.1 36.1 36.1 36.1	O mass 1.4 TeV $\beta = 1$ Q mass 1.56 TeV $\beta = 1$ Q' mass 1.03 TeV $\beta (LQ_2^{\circ})$ Q ⁱ mass 970 GeV $\mathcal{B}(LQ_2^{\circ})$	ightarrow b au) = 1 ightarrow t au) = 0	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{l} VLQ\;TT \rightarrow Ht/Zt/Wb + X \\ VLQ\;BB \rightarrow Wt/Zb + X \\ VLQ\;T_{5/3}\;T_{5/3}\;T_{5/3} \rightarrow Wt + X \\ VLQ\;Y \rightarrow Wb + X \\ VLQ\;B \rightarrow Hb + X \\ VLQ\;QQ \rightarrow WqWq \end{array} $	multi-chann multi-chann $2(SS)/\geq 3 e,$ $1 e, \mu$ $0 e, \mu, 2 \gamma$ $1 e, \mu$	el el $\mu \ge 1 \ b, \ge 1 \ j$ $\ge 1 \ b, \ge 1 \ j$ $\ge 1 \ b, \ge 1 \ j$ $\ge 4 \ j$	Yes Yes Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	mass 1.37 TeV SU(2) d mass 1.34 TeV SU(2) d systems 1.34 TeV SU(2) d yrass 1.64 TeV $\mathcal{G}(T_{7/3})$ mass 1.85 TeV $\mathcal{G}(Y \rightarrow$ mass 1.21 TeV $\mathcal{B}(Y \rightarrow$ mass 690 GeV $\mathcal{B}(Y \rightarrow$	oublet oublet $\rightarrow Wt$)= 1, $c(T_{5/3}Wt)$ = 1 Wb)= 1, $c_R(Wb)$ = 1	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j – –		139 36.7 36.1 20.3 20.3	* mass 6.7 TeV only u* * mass 5.3 TeV only u* * mass 2.6 TeV only u* * mass 3.0 TeV A = 3.0 * mass 1.6 TeV A = 1.6	and $d^*, \Lambda = m(q^*)$ and $d^*, \Lambda = m(q^*)$) TeV 5 TeV	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	1 e, μ 2 μ 2,3,4 e, μ (S 3 e, μ, τ - - -	≥ 2 j 2 j S) – – – – –	Yes - - - - - 5 TeV	79.8 36.1 36.1 20.3 36.1 34.4	Image: solution of the second secon	$ \begin{array}{l} = 4.1 \ {\rm TeV}, g_L = g_R \\ {\rm fuction} \\ {\rm fluction}, \mathcal{B}(\mathcal{H}_L^{\pm\pm} \rightarrow \ell \tau) = 1 \\ {\rm fluction}, q = 5e \\ {\rm fluction}, g = 1g_D, {\rm spin} 1/2 \end{array} $	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

Wolfgang Wagner, Top-Quarks am LHC ...

Chapter 4

Indirect searches / searches for anomalous couplings

Decays via flavour-changing neutral currents (FCNC)

- Do not exist at tree (Born) level in the SM
- Very strongly suppressed at next-to-leading order (loop level): GIM mechanism = CKM unitarity
- Suppression is lifted by non-degenerate quark masses.
- Branching ratios are extremely small.

$$\begin{array}{cccc} Br(t \to q\gamma) & Br(t \to qZ) & Br(t \to qg) \\ q = u & 3.7 \times 10^{-16} & 8 \times 10^{-17} & 3.7 \times 10^{-14} \\ q = c & 4.6 \times 10^{-14} & 1 \times 10^{-14} & 4.6 \times 10^{-12} \end{array}$$

FCNC in theories beyond the SM

·u(c) Branching ratios of top-quark decays in SM and BSM theories: \mathbf{SM} 2HDM(FV)2HDM(FC)MSSM \mathbf{RS} Process RPV 7×10^{-17} $t \rightarrow Zu$ $< 10^{-7}$ $< 10^{-6}$ $\leq 10^{-10}$ $\leq 10^{-7} \leq 10^{-6}$ 1×10^{-14} $\leq 10^{-6}$ $\leq 10^{-5}$ Z/γ $t \rightarrow Zc$ 4×10^{-14} $\leq 10^{-7} \leq 10^{-6}$ $t \rightarrow qu$ vu(c) $t \rightarrow gc = 5 \times 10^{-12}$ $\le 10^{-4}$ $\leq 10^{-8}$ $\leq 10^{-7} \leq 10^{-6} \leq 10^{-10}$ $\leq 10^{-8} \leq 10^{-9}$ 4×10^{-16} $t \rightarrow \gamma u$ $\leq 10^{-9}$ $t \rightarrow \gamma c$ 5×10^{-14} $\le 10^{-7}$ $\leq 10^{-8} \leq 10^{-9} \leq 10^{-9}$ $< 10^{-5} < 10^{-9}$ $t \rightarrow hu = 2 \times 10^{-17}$ 6×10^{-6} 2×10^{-3} $\leq 10^{-5}$ $t \rightarrow hc = 3 \times 10^{-15}$ $< 10^{-5} < 10^{-9} < 10^{-4}$ Η Snowmass Workshop 2013, arXiv: 1311.2028 ∕u(c) Strong enhancement! teeleee g Any FCNC signal is evidence for BSM physics!

Wolfgang Wagner, Top-Quarks am LHC ...

Even Hollywood knows: FCNC are exiting!

The Big Bang Theory

Search for $t \rightarrow qZ$ in $t\bar{t}$ production

ATLAS Collaboration, Search for flavour-changing neutral current top-quark decays $t \rightarrow qZ$ in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Journal of High Energy Physics (JHEP) 07 (2018) 176. arXiv: 1803.09923.

Signature and event selection

- 3 high- $p_{\rm T}$, isolated charged leptons (e^{\pm} or μ^{\pm}) with $p_{\rm T} > 15 {\rm ~GeV}$
 - One if them with $p_{\rm T} > 27 \text{ GeV}$ (trigger)
- \geq 2 jets with $p_{\rm T}$ > 25 GeV
 - Exactly one of them *b*-tagged
- $E_{\rm T}^{\rm miss} > 20 \; {\rm GeV}$

Main backgrounds:

- $t\bar{t}Z$, tZ, WZ and ZZ production
- Non-prompt leptons from Z + jets and $t\bar{t}$ production

Event reconstruction

- Reconstruction of the Z boson candidate ($Z^0 = \ell_a^+ \ell_b^-$)
 - Require opposite-sign (charge) same-flavour lepton pair (e^+e^- or $\mu^+\mu^-$)
 - $|m(\ell_a^+ \ell_b^-) m_Z| < 15 \text{ GeV}$
 - If two combinations, choose the pair closest to m_Z

- Reconstruction of top-quark candidates:
 - Minimize

$$\chi^2 = \frac{\left(m_{j_a\ell_a\ell_b}^{\text{reco}} - m_{t_{\text{FCNC}}}\right)^2}{\sigma_{t_{\text{FCNC}}}^2} + \frac{\left(m_{j_b\ell_c\nu}^{\text{reco}} - m_{t_{\text{SM}}}\right)^2}{\sigma_{t_{\text{SM}}}^2} + \frac{\left(m_{\ell_c\nu}^{\text{reco}} - m_W\right)^2}{\sigma_W^2}$$

- Determine $p_z(v)$
- Jet assignment
- Selection cuts: $\left|m_{j_a \ell_a \ell_b}^{\text{reco}} 172.5 \text{ GeV}\right| < 40 \text{ GeV}, \left|m_{j_b \ell_c \nu}^{\text{reco}} 172.5 \text{ GeV}\right| < 40 \text{ GeV}, \left|m_{\ell_c \nu}^{\text{reco}} 80.4 \text{ GeV}\right| < 30 \text{ GeV}$

Background estimate via control regions

5 control regions are defined to determine the background rates

Sample	$t\bar{t}Z$ CR	$WZ \ CR$	$ZZ \ CR$	Non-prompt	Non-prompt
				lepton $CR0$	lepton $CR1$
$t\bar{t}Z$	61 ± 9	16.3 ± 3.1	0 ± 0	6.1 ± 1.2	22.1 ± 3.2
WZ	9 ± 9	560 ± 240	0 ± 0	150 ± 70	20 ± 9
ZZ	0.07 ± 0.03	48 ± 11	92 ± 20	58 ± 16	9.0 ± 2.3
Non-prompt leptons	3 ± 6	28 ± 16	0 ± 0	150 ± 50	140 ± 70
Other backgrounds	13.4 ± 2.7	22 ± 5	1.0 ± 0.6	17 ± 6	32 ± 6
Total background	87 ± 15	670 ± 240	93 ± 20	380 ± 90	230 ± 70
Data	81	734	87	433	260
Data / Bkg	0.94 ± 0.19	1.1 ± 0.4	0.94 ± 0.23	1.13 ± 0.28	1.1 ± 0.4

For each region the distribution of a particular discriminant is included in the final maximum likelihood fit.

Fit result and upper limits

Use CLs method to set upper limits.

• Test statistic:
$$q_{\mu} = -2 \ln \frac{L(\mu, \hat{\theta})}{L(\hat{\mu}, \hat{\theta})}$$

and

 $\mathcal{B}(t \rightarrow cZ) < 2.4 \cdot 10^{-4}$

Status of FCNC limits

Interpretation in an Effective Field Theory

Use generic framework to parameterise Beyond the Standard Model contributions:

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda^2} \sum_i C_i \mathcal{O}_i + \text{h.c.}$$

Use MadGraph5_aMC@NLO and FeynRules2.0 with the TopFCNC model.

Relevant operators for tqZ coupling:

$$\mathcal{O}_{uB}^{(3i)} = g_Y \left(\bar{q}_i \, \sigma^{\mu\nu} \, t \right) \tilde{\varphi} \, B_{\mu\nu} \quad \text{and}$$
$$\mathcal{O}_{uW}^{(3i)} = g_W \left(\bar{q}_i \, \sigma^{\mu\nu} \, \tau^I \, t \right) \tilde{\varphi} \, W_{\mu\nu}^I$$

Operator	Observed	Expected
$ C_{uB}^{(31)} $	0.25	0.30
$ C_{uW}^{(31)} $	0.25	0.30
$ C_{uB}^{(32)} $	0.30	0.34
$ C_{uW}^{(32)} $	0.30	0.34

Chapter 5

Precision measurements of top-quark properties

PRECISION VS ACCURACY

Reduce statistical and systematic uncertainties!

Pushing the frontiers of complexity

	tī	tq	tW	tb	tŦW	tτZ	tŦγ	tqZ	tŦH	tīttī	tWZ	tΗ	"rareness" of process σ^{-1} 🔪
Total cross- section												- - - - - - - - - - - - - - - - - - -	
Fiducial cross- sections											ritory		
Asymmetrie s									Unct	artedte	2 `		
Differential cross- sections													
Complexity of analysis													

An example: *t*-channel single top-quark production

ATLAS Collaboration, Fiducial, total and differential cross-section measurements of *t*-channel single top-quark production in *pp* collisions at 8 TeV using data collected by the ATLAS detector, Eur. Phys. J. C 77 (2017) 531. arXiv: 1702.02859.

Observables

total cross-sections

$$\sigma(tq) = \sigma(\bar{t}q)$$

- cross-section ratio $R_t = \frac{\sigma(tq)}{\sigma(\bar{t}q)}$
- differential cross-sections

Separating signal and background events with neural networks

Signal purity after "regular" event selection: 21% for tq and 14% for $\bar{t}q$ \Rightarrow improve purity with multivariate methods

Determine yield of signal events

Perform a maximum likelihood fit to the discriminant distributions.

+ channel (top-quarks)

- channel (top-antiquarks)

Estimated event yields

Fiducial cross-sections

Fiducial tq and $\bar{t}q$ cross-section results

Comparison to predictions by NLO ME generators + different parton-shower programs.

Top-quark

Total uncertainty: 5.8 % (top-quark)

Top-antiquark

Total uncertainty: 7.8 % (top-antiquark)

Total cross-sections

Extrapolation to the full phase space:

$$\sigma_{\rm tot} = \frac{1}{A_{\rm fid}} \cdot \sigma_{\rm fid}$$

Done for different generator setups.

Top-antiquark

Cross-section ratio R_t of tq to $\bar{t}q$ production

$$R_t = \frac{\sigma_{\text{tot}}(tq)}{\sigma_{\text{tot}}(\bar{t}q)}$$

- Total uncertainty: ± 5.0 %
- Statistically limited
- Comparison to predictions with different PDF sets.

$$R_{t} = \frac{\sigma_{tot}(tq)}{\sigma_{tot}(\bar{t}q)} = 1.72 \pm 0.05 \text{ (stat.)} \pm 0.07 \text{ (exp.)} = 1.72 \pm 0.09$$

$$ATLAS \qquad \qquad \forall s=8 \text{ TeV}, 20.2 \text{ fb}^{-1}$$
Measurement result
$$stat. \oplus \text{ syst.} \quad stat.$$
Predictions calculated in 5FS:
$$scale \oplus \text{ PDF} + \alpha_{s} \text{ unc.}$$
ABM (5 flav.)
$$ATLAS \text{ epWZ12}$$
CT14
$$HERAPDF 2.0$$

$$JR14 \text{ (VF)}$$

$$MMHT2014$$

$$NNPDF 3.0$$

$$A = 1.5 \quad 1.6 \quad 1.7 \quad 1.8 \quad 1.9 \quad 2$$

$$R_{t}$$

Wolfgang Wagner, Top-Quarks am LHC ...

arXiv: 1702.02859 [hep-ex]

Differential tq and $\bar{t}q$ cross-sections

Enrich *tq* events by cut on NN discriminant

50

100

150

200

250

m(lvb) [GeV]

300

Observe good agreement with predictions by NLO generators.

Combination with CMS and determination of $|f_{LV} \cdot V_{tb}|$

JHEP 05 (2019) 088

Using $|f_{LV} \cdot V_{tb}| = \sqrt{\frac{\sigma_{meas}}{\sigma_{pred}}}$

- Define the additional left-handed form factor f_{LV} to parameterise deviations from the SM.
- Assume V-A vertex structure to be unchanged.

Zusammenfassung

Die Rolle des Top-Quarks im Standardmodell

Der ATLAS-Detektor

Einbau des IBL

Identifikation von *b*-Quark-Jets

Summary: Challenging the Standard Model with top quarks

