

Colored Glass Filters

Available in:

Production Quantities

✓ Custom Sizes

The colored glass filters in this catalog are made from the highest quality Schott colored filter glass. The spectral properties of these filters are uniform over their entire aperture and are invariant with time at temperatures below 250°C (482°F).

- Spectral properties are insensitive to the angle of incidence.
- All colored glass filters come with individual spectrophotometer curves and are shipped in protective vinyl pages.

APPLICATION NOTE

Transmittance Curve Interpretation

At any specific wavelength the external transmittance, T, of a colored glass filter is given by the approximate formula

$$T = t_1 t_2 T_i$$

where t_1 is the transmittance of the first air-glass interface, t_2 is the transmittance of the second air-glass interface, and T_i is the internal transmittance. This formula neglects possible multiple reflections that may occur between interfaces. The interface transmittances t_1 and t_2 are equal, and their product t_1t_2 is called the correction factor. The correction factor is related to the refractive index n of the glass by

$$t_1t_2 = 1 - 2\left(\frac{n-1}{n+1}\right)^2 + \left(\frac{n-1}{n+1}\right)^4$$
.

The nominal filter transmittance curves shown in this chapter are graphs of internal transmittance versus wavelength for a thickness of 3 mm. This is the thickness of our standard filters. Thus the curves neglect all effects of reflections at the air-glass interfaces such as the reflectance dependence on angle. Values of the correction factor are also given; these can be used to determine nominal external transmittance. Minimal internal transmittance graphs have been included in this catalog to calculate nominal external transmittance at nonstandard thicknesses.

SPECIFICATIONS: COLORED GLASS FILTERS

Spectral Curves:

Spectrophotometer curves are supplied with each filter. Accuracy of transmittance curves is 2% of full scale.

Dimensions:

Diameter: 25.0 + 0, -0.15 mm

Square: $50.8 \text{ mm} \times 50.8 \text{ mm} (\pm 0.2 \text{ mm})$

Thickness: 3.0 mm ± 0.25 mm

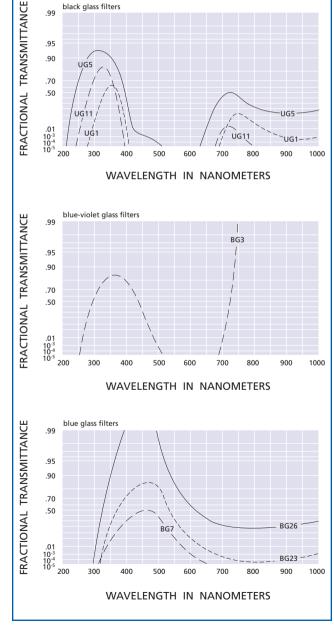
Parallelism: 2 arc minutes

Material: Schott colored glass

Surface Quality: Pitch polished, 80-50 scratch and dig

Melt-to-Melt Transmittance Variation: ± 7.0 nm deviation for sharp cut on filters

Suggested Maximum Operating Temperature:


250°C (482°F). Irreversible transmittance changes may occur at higher temperatures.

Identification:

Each filter is marked with the last three digits of its product number.

Packaging:

Each filter with its curve is packaged in a protective vinyl binder page. Binders are also available separately.

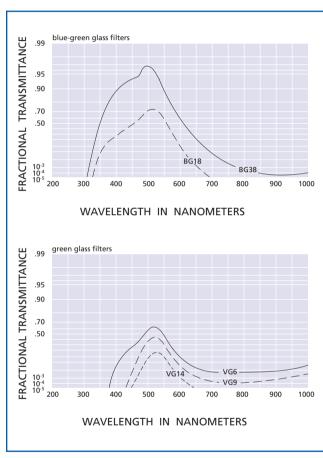
black glass filters

99

Typical internal transmittance curves for 3.0-mm glass thickness

UV-Transmitting Black Glass Filters

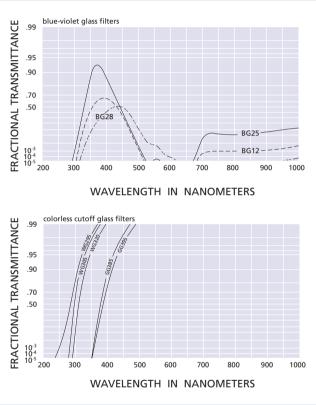
	Correction		
Schott Glass	Factor	Size	PRODUCT
Туре	(t ₁ t ₂)	(mm)	NUMBER
UG 5	0.91	ϕ 25.0	03 FCG 577
	0.91	50.8×50.8	03 FCG 177
UG 11	0.91	ϕ 25.0	03 FCG 579
	0.91	50.8×50.8	03 FCG 179
UG 1	0.91	ϕ 25.0	03 FCG 401
	0.91	50.8×50.8	03 FCG 001


UV- and Red-Transmitting Blue-Violet Glass Filters

	Correction		
Schott Glass	Factor	Size	PRODUCT
Type	(t_1t_2)	(mm)	NUMBER
BG 3	0.92	φ25.0	03 FCG 409
	0.92	50.8×50.8	03 FCG 009

Red-Absorbing Blue Glass Filters

	Correction		
Schott Glass	Factor	Size	PRODUCT
Туре	(t ₁ t ₂)	(mm)	NUMBER
BG 7	0.92	ϕ 25.0	03 FCG 411
	0.92	50.8×50.8	03 FCG 011
BG 26	0.92	ϕ 25.0	03 FCG 423
	0.92	50.8×50.8	03 FCG 023
BG 23	0.92	φ25.0	03 FCG 419
	0.92	50.8×50.8	03 FCG 019

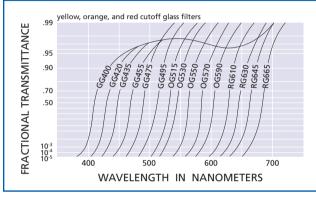

Typical internal transmittance curves for 3.0-mm glass thickness

Red-Absorbing Blue-Green Glass Filters

	Correction		
Schott Glass	Factor	Size	PRODUCT
Туре	(t ₁ t ₂)	(mm)	NUMBER
BG 38	0.915	φ25.0	03 FCG 433
	0.915	50.8×50.8	03 FCG 033
BG 18	0.91	ϕ 25.0	03 FCG 414
	0.91	50.8×50.8	03 FCG 014

Green Glass Filters

	Correction		
Schott Glass	Factor	Size	PRODUCT
Туре	(t ₁ t ₂)	(mm)	NUMBER
VG 6	0.91	ϕ 25.0	03 FCG 439
	0.91	50.8×50.8	03 FCG 039
VG 9	0.91	ϕ 25.0	03 FCG 441
	0.91	50.8×50.8	03 FCG 041
VG 14	0.91	ϕ 25.0	03 FCG 445
	0.91	50.8×50.8	03 FCG 045


Typical internal transmittance curves for 3.0 mm glass thickness

Red-Absorbing Blue-Violet Glass Filters

	Correction		
Schott Glass	Factor	Size	PRODUCT
Type	(t_1t_2)	(mm)	NUMBER
BG 25	0.92	φ25.0	03 FCG 421
	0.92	50.8×50.8	03 FCG 021
BG 12	0.92	ϕ 25.0	03 FCG 413
	0.92	50.8×50.8	03 FCG 013
BG 28	0.92	φ25.0	03 FCG 425
	0.92	50.8×50.8	03 FCG 025

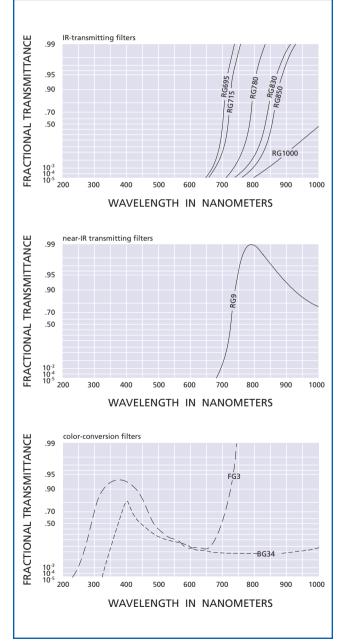
Colorless Sharp Cutoff Glass Filters

	Correction		
Schott Glass	Factor	Size	PRODUCT
Туре	(t_1t_2)	(mm)	NUMBER
WG 295	0.92	ϕ 25.0	03 FCG 519
	0.92	50.8×50.8	03 FCG 119
WG 305	0.92	φ25.0	03 FCG 521
	0.92	50.8×50.8	03 FCG 121
WG 320	0.91	ϕ 25.0	03 FCG 523
	0.91	50.8×50.8	03 FCG 123
GG 385	0.905	ϕ 25.0	03 FCG 449
	0.905	50.8×50.8	03 FCG 049
GG 395	0.895	φ25.0	03 FCG 455
	0.895	50.8×50.8	03 FCG 055

Typical internal transmittance curves for 3.0-mm glass thickness

Yellow, Orange, and Red Sharp Cutoff Glass Filters Correction

		Concellon		
Schott Glass		Factor	Size	PRODUCT
Type	$\Delta \lambda / \Delta T^*$	(t_1t_2)	(mm)	NUMBER
GG 400	0.07	0.91	φ25.0	03 FCG 457
	0.07	0.91	50.8×50.8	03 FCG 057
GG 420	0.07	0.91	φ25.0	03 FCG 459
	0.07	0.91	50.8×50.8	03 FCG 059
GG 435	0.07	0.91	φ25.0	03 FCG 461
	0.07	0.91	50.8×50.8	03 FCG 061
GG 455	0.08	0.915	φ25.0	03 FCG 463
	0.08	0.915	50.8×50.8	03 FCG 063
GG 475	0.09	0.915	ϕ 25.0	03 FCG 465
	0.09	0.915	50.8×50.8	03 FCG 065
GG 495	0.10	0.915	φ25.0	03 FCG 467
	0.10	0.915	50.8×50.8	03 FCG 067
OG 515	0.11	0.915	φ25.0	03 FCG 483
	0.11	0.915	50.8×50.8	03 FCG 083
OG 530	0.12	0.915	ϕ 25.0	03 FCG 485
	0.12	0.915	50.8×50.8	03 FCG 085
OG 550	0.13	0.915	ϕ 25.0	03 FCG 487
	0.13	0.915	50.8×50.8	03 FCG 087
OG 570	0.14	0.915	ϕ 25.0	03 FCG 489
	0.14	0.915	50.8×50.8	03 FCG 089
OG 590	0.15	0.915	φ25.0	03 FCG 498
	0.15	0.915	50.8×50.8	03 FCG 098
RG 610	0.16	0.915	ϕ 25.0	03 FCG 501
	0.16	0.915	50.8×50.8	03 FCG 101
RG 630	0.17	0.915	ϕ 25.0	03 FCG 503
	0.17	0.915	50.8×50.8	03 FCG 103
RG 645	0.17	0.915	ϕ 25.0	03 FCG 505
	0.17	0.915	50.8×50.8	03 FCG 105
RG 665	0.17	0.915	ϕ 25.0	03 FCG 507
	0.17	0.915	50.8×50.8	03 FCG 107
*Λλ/ΛΤ is the tem	nerature coef	ficient of half-r	nower point position	shift in nm/°C see


^{*}Δλ/ΔT is the temperature coefficient of half-power point position shift in nm/°C see application note.

APPLICATION NOTE

Temperature Dependence of Cutoff Filters

Sharp cutoff glasses exhibit a reversible shift of the absorption edge position (of which the half-power point is a convenient indicator) as the temperature is increased. The shift, roughly constant over the range from 10° to 90°C, is tabulated (for sharp cutoff filters only) in nm/°C under the heading Δ\/ΔT. The shift is in the direction of longer wavelengths as the temperature is increased.

Typical internal transmittance curves for 3.0-mm glass thickness

IR-Transmitting Black Glass Filters

		Correction		
Schott Glass		Factor	Size	PRODUCT
Туре	Δλ/ΔΤ*	(t_1t_2)	(mm)	NUMBER
RG695	0.18	0.915	φ25.0	03 FCG 509
	0.18	0.915	50.8×50.8	03 FCG 109
RG715	0.18	0.915	ϕ 25.0	03 FCG 511
	0.18	0.915	50.8×50.8	03 FCG 111
RG780	0.22	0.915	ϕ 25.0	03 FCG 512
	0.22	0.915	50.8×50.8	03 FCG 112
RG830	0.28	0.915	ϕ 25.0	03 FCG 514
	0.28	0.915	50.8×50.8	03 FCG 114
RG850	0.30	0.915	ϕ 25.0	03 FCG 518
	0.30	0.915	50.8×50.8	03 FCG 118
RG1000	0.18	0.915	ϕ 25.0	03 FCG 513
	0.18	0.915	50.8×50.8	03 FCG 113

^{*\}Delta\lambda\T is the temperature coefficient of half-power point position shift in nm/°C. Refer

Near-IR-Transmitting Black Glass Filters

		Correction		
Schott Glass		Factor	Size	PRODUCT
Туре	Δλ/ΔΤ*	(t_1t_2)	(mm)	NUMBER
RG9	0.07	0.915	ϕ 25.0	03 FCG 515
	0.07	0.915	50.8×50.8	03 FCG 115

^{*} $\Delta\lambda/\Delta T$ is the temperature coefficient of half-power point position shift in nm/°C. Refer to application note on page 13.7.

Blue-Tinted Glass Filters for Color Conversion

	Correction		
Schott Glass	Factor	Size	PRODUCT
Туре	(t ₁ t ₂)	(mm)	NUMBER
FG3	0.925	ϕ 25.0	03 FCG 539
	0.925	50.8×50.8	03 FCG 139
BG34	0.90	ϕ 25.0	03 FCG 427
	0.90	50.8×50.8	03 FCG 027