Recent physics highlights of experiments at the LHC

Wolfgang Wagner

Bergische Universität Wuppertal

innnn

DPG Spring Meeting, Dortmund, March 17, 2021

1) Introduction: The LHC and its particle detectors

2) Measurements on the Higgs boson, the top-quark, electroweak and QCD processes

3) Flavour physics

4) Searches for physics beyond the Standard Model

5) Heavy-ion collisions

Disclaimer:

Cannot possibly discuss all beautiful and impressing results deserving coverage.

The Large Hadron Collider (LHC)

BERGISCHE UNIVERSITÄT **WUPPERTAL**

- The most powerful accelerator ever built.
- Outstanding performance in Run 2 at $\sqrt{s} = 13$ TeV: Record instantaneous luminosity: $\mathcal{L} = 2.1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Geneva

ATLAS

ATLAS

SPS

LHCb

LHCb

Factor 2

ALICE

ALICE

100 m

CERN

CMS Integrated Luminosity, pp, $\sqrt{s} = 13$ TeV

- Integrated luminosity (pp) delivered to ATLAS and CMS: $\cong 160 \text{ fb}^{-1}$
- Luminosity levelling at ALICE and LHCb
- Other data sets Pb-Pb, proton-Pb, Xe-Xe

- LHC Circumference: 27 km
 - 2556 proton bunches

CMS

Stable beams efficiency: 49%

More information: J. Wenninger, <u>CERN-ACC-NOTE-2019-0007</u>

ATLAS and CMS

BERGISCHE UNIVERSITÄT WUPPERTAL

- Two general-purpose detectors, covering nearly the entire solid angle around the collisions points.
- Inner tracking systems solenoid electromagnetic and hadronic calorimeters muon system

Various upgrades ongoing during Long Shutdown 2 (2019 – 2022).

An experimental challenge: pile-up

High luminosity comes at a prize: pile-up collisions

On average 34 simultaneous *pp* collisions at the same bunch crossing.

- Need good reconstruction and separation of primary (hard scattering) vertex and pile-up vertices.
- Reconstruction algorithms are designed to keep performance independent from pile-up.

Mean Number of Interactions per Crossing

Object reconstruction: charged leptons

Muons

Electrons

Efficiencies of muon reconstruction, identification, isolation and vertex association understood at per-mille level due to large samples of $Z \rightarrow \mu^+\mu^-$ and $J/\psi \rightarrow \mu^+\mu^-$.

Excellent energy resolution for electrons is reached as determined with $Z \rightarrow e^+e^-$ events.

Object reconstruction: jets

BERGISCHE UNIVERSITÄT WUPPERTAL

Jet energy resolution

ranges from 24 \pm 1.5 % at 20 GeV to 6 \pm 0.5 % at 300 GeV for particle-flow jets.

Measured with dijet events using the dijetbalance method.

arXiv: 2007.02645

Separation of *b*-, *c*- and light-flavour jets

* Deep neural network implemented with Keras interfaced to TensorFlow.

<u>JINST 13 (2018) P05011</u>

The ALICE detector – the heavy-ion specialist

Understanding the quark-gluon plasma (QGP) – search for new bound states – understanding confinement

- Major upgrade program during Long Shutdown 2
- Among others: Upgrade of the TPC completed in 2020, featuring Gas Electron Multipliers (GEM):

LHCb – the bottom- and charm-hadron specialist

BERGISCHE **UNIVERSITÄT WUPPERTAL**

 θ_{b} (rad)

- Scrutinizing CP violation in the SM Search for exotic hadrons Rare B-Meson decays
- Detector optimized for excellent vertex reconstruction and particle identification, e.g. K and π separation

Recent physics highlights of experiments at the LHC **Wolfgang Wagner**

Part 2

Measurements on the Higgs boson, the top quark, electroweak and QCD processes

More on "Standard Model physics" at this meeting:

- > Hale Sert: A walk through $H \rightarrow \tau^+ \tau^-$ in the CMS experiment, T 49.1, today 14:00
- Matthias Schröder: The Higgs boson at the LHC: a glimpse, T 73.1, Thursday 9:45
- Reinhild Yvonne Peters: No Time to die? Scrutinizing the SM and other Top Stories, T 73.2, Thursday 11:00
- Mathieu Pellen: Stress testing the Standard Model via vector-boson scattering at the LHC, T.74.3, Thursday 15:00
- Jonas Lindert: The quest for precise LHC predictions, T 99.2, Friday 11:00

Cross-sections of standard model processes

- Cross-sections of high-p_T SM processes span
 6 orders of magnitude!
- In 139 fb⁻¹ (Run 2 data set):
 - O(26 billion) W events
 - O(28k) $t\bar{t}H$ events

produced.

The Higgs boson agenda at the LHC

- Mass \rightarrow Use $H \rightarrow ZZ^*$ and $H \rightarrow \gamma\gamma$
- ♦ *CP* structure \rightarrow Use angular distributions
- ☆ Coupling strengths → Measure all accessible production and decay modes
- Search for
 - multiple Higgs bosons as part of BSM physics
 - enhancements of "forbidden" decays

Recent physics highlights of experiments at the Wolfgang Wagner

ГH

Higgs-boson mass

BERGISCHE UNIVERSITÄT WUPPERTAL

- Measurement in the $H \rightarrow \gamma \gamma$ channel.
- $m_H = 125.78 \pm 0.26 \text{ GeV}$

 Statistical and systematic uncertainties are at an equal level: ±0.18 GeV each. Combination with previous measurements in $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*$

Currently, the most precise measurement of m_H !

Nolfgang Wagner

0.8

BERGISCHE UNIVERSITÄT **WUPPERTAL** Recent physics highlights of experiments at the LHC

Boosted Decision Trees

(BDTs) separate signal and

background events

Measuring WH and ZH production with $H \rightarrow bb$

Targeted signatures:

> $ZH \rightarrow \nu\nu b\bar{b}, WH \rightarrow \ell\nu b\bar{b}$ and $ZH \rightarrow \ell^+ \ell^- b\bar{b}$ \Rightarrow three main channels: 0ℓ , 1ℓ and 2ℓ

• Signal strength $\mu = \frac{(\sigma \times B)_{obs}}{(\sigma \times B)_{pred}} = 1.02 \stackrel{+0.18}{-0.17}$.

Limits to non-SM contributions are set in the context of an effective field theory (EFT) approach.

Evidence for the three-body decay $H \rightarrow \ell^+ \ell^- \gamma$

Evidence for the $H \rightarrow \mu^+ \mu^-$ decay mode

BERGISCHE UNIVERSITÄT **WUPPERTAL**

- Prediction: $\mathcal{B}(H \rightarrow \mu^+ \mu^-) = 2.18 \times 10^{-4}$
- Analysis considers the four major production mechanisms. \Rightarrow event categories: ggH, VBF, WH, ZH and $t\bar{t}H$
- Deep neural networks (DNN) and boosted decisions trees (BDT)

for separating signal and background events.

Simultaneous fit to DNN and $m(\mu^+\mu^-)$ distributions of all categories and combination with Run 1:

Signal strength: $\mu = \frac{(\sigma \times \mathcal{B})_{\text{obs}}}{(\sigma \times \mathcal{B})_{\text{pred}}} =$ $1.19^{+0.40}_{-0.39}$ (stat.) $^{+0.15}_{-0.14}$ (syst.)

Observed significance: **3.0 s.d.** (2.5 s.d. expected)

137 fb⁻¹ (13 TeV) Ge € Ge CMS Data 700 S+B (µ=1.19) All categories Events S/(S+B) weighted ----- Bkg. component 600F m_u = 125.38 GeV ±1σ S/(S+B) Weighted F 00 000 000 000 000 ±2σ 100 Data-Bkg. 150 110 125 130 135 140 145 m_{uu} (GeV)

JHEP 01 (2021) 148

arXiv: 2009.04363

Distribution of $m(\mu^+\mu^-)$ with events weighted by S/(S+B)

17

Combined measurement of production and decay rates

- Combine 11 analyses using their likelihood functions.
- Good agreement with SM predictions!
- Global signal strength:

1.00

Search for Higgs-pair production

- Pair production of Higgs bosons provides access to the trilinear self-coupling of the Higgs boson
- Search in the $HH \rightarrow \gamma \gamma b \overline{b}$ channel with $\mathcal{B} = 0.2633$ %.
- Use Boosted Decisions Trees and $\widetilde{M}_X = m(\gamma\gamma b\overline{b}) - (m(\gamma\gamma) - m_H) - (m(b\overline{b}) - m_H)$ to define 14 event categories of different S/\sqrt{B} .

• Unbinned maximum-likelihood fit to the $m(\gamma\gamma)$ and $m(b\bar{b})$ distributions for extracting the signal yield and set an upper limit:

 $\sigma(HH \to \gamma \gamma b\bar{b}) < 0.67 \text{ fb } @ 95\% \text{ C.L.} \\ = 7.7 \times \sigma_{\text{SM}}(HH \to \gamma \gamma b\bar{b}) \\ \text{expected: } 5.2 \times \sigma_{\text{SM}}(HH \to \gamma \gamma b\bar{b})$

Constraints on the Higgs self-coupling:

$$-3.3 < \kappa_{\lambda} = rac{\lambda_{HHH}}{\lambda_{HHH}^{SM}} < 8.5$$

Determination of the top-quark Yukawa coupling Y_t

- Use dependence of $\frac{d\sigma}{dm(bb\ell\ell)}$ and $\frac{d\sigma}{dy(bb\ell\ell)}$ on Y_t via a virtual Higgs exchange in a detector-level profile-likelihood fit
- Result: $Y_t = 1.16^{+0.24}_{-0.35}$
- Complementary to the result from the κ -framework (Higgs cross-sections): $Y_t = 0.98 \pm 0.14$

Phys. Rev. D. 102 (2020) 092013 arXiv: 2009.07123

- Use $t\bar{t}$ production for measuring Y_t , selecting events in the $e\mu$ -dilepton channel.
- Sensitive variables: $m(bb\ell\ell) \sim m(t\bar{t})$ and $y(b\ell^+) y(\bar{b}\ell^-) \sim \Delta y(t\bar{t})$.

20

Evidence for four-top-quarks production

21

Testing the universality of the weak coupling to τ and μ

- Measure $R(\tau/\mu) = \frac{\mathcal{B}(W \to \tau \nu)}{\mathcal{B}(W \to \mu \nu)}$ in $t\bar{t}$ events.
- Transverse impact parameter $d_0(\mu)$ and $p_T(\mu)$ distributions are used to separate prompt muons and muons from the $W \rightarrow \tau \nu_{\tau} \rightarrow \mu \nu_{\mu} \nu_{\tau} \nu_{\tau}$ decay chain.

BERGISCHE

UNIVERSITÄT WUPPERTAL

Observation of photo-production of W^+W^- pairs

- Photon-induced production W⁺W⁻ pairs proceeds via trilinear and quartic gauge-boson interactions.
- Select $e^{\pm}\mu^{\mp}$ events targeting $W^+W^- \rightarrow e^{\pm}\nu\mu^{\mp}\nu$ final states and suppressing $Z \rightarrow e^+e^- / \mu^+\mu^-$.
- Suppress $Z \to \tau^+ \tau^- \to e^{\pm} \nu_{\tau} \nu_e \mu^{\mp} \nu_{\tau} \nu_e$ events by requiring $p_T^{e\mu} > 30$ GeV.

- γγ → W⁺W⁻ events have low track multiplicity (elastic, single- or doubledissociative production)
- Require $n_{trk} = 0!$
- Fiducial cross-section:

 $\sigma(\gamma\gamma \to W^+W^-) = 3.13 \pm 0.31(\text{stat.}) \pm 0.28 \text{ (syst.) fb}$

corresponding to 8.4 s.d. (6.7 s.d. are expected) <u>arXiv: 2010.04019</u>

Measurement of $W\gamma$ production

- Probe the $WW\gamma$ triple-gauge coupling.
- Fit to the m(ℓ[±]γ) distribution for estimating the signal yield.
- Fiducial cross-section:
 - $\sigma_{\rm fid} = 15.58 \pm 0.75 \ {\rm pb} \ (4.8 \ \% \ {\rm prec.})$
- Use the $p_{\rm T}(\gamma)$ distribution for setting limits to anomalous gauge couplings in the context of effective field theory.

Limits of EFT coefficients

Coefficient	Exp. lower	Exp. upper	Obs. lower	Obs. upper
c_{WWW}/Λ^2	-0.85	0.87	-0.90	0.91
c_B/Λ^2	-46	45	-40	41
$c_{\overline{W}WW}/\Lambda^2$	-0.43	0.43	-0.45	0.45
$c_{\overline{W}}/\Lambda^2$	-23	22	-20	20

25

Measurement of α_s

Measure transverse energy-energy correlations (TEEC) in multi-jet events:

$$\frac{1}{\sigma}\frac{d\Sigma}{d\cos\phi} \equiv \frac{1}{N}\sum_{A=1}^{N}\sum_{ij}\frac{E_{\mathrm{T}i}^{A}E_{\mathrm{T}j}^{A}}{(\sum_{k}E_{\mathrm{T}k}^{A})^{2}}\delta(\cos\phi - \cos\phi_{ij})$$

Index A runs over the selected events.

• Use measurements to determine $\alpha_s(m_Z)$ and $\alpha_s(Q)$

Distribution of the azimuthal differences $\cos \phi_{ij}$ of jet pairs weighted by the transverse energies of the jets.

ATLAS-CONF-2020-025

- Measurements of the α_s running are / extended to a scale of several TeV
 - Global fit to all scales: $\alpha_{s}(m_{Z}) = 0.1196$ $\pm 0.0001 \text{ (stat.}) \pm 0.0004 \text{ (syst.})$ $\stackrel{+0.0071}{-0.0104} \text{ (scale}) \pm 0.0011 \text{ (PDF})$ $\pm 0.0002 \text{ (NP corr.})$
- Scale uncertainties dominate by far.

Part 3

Flavour physics

More on Flavour Physics at this meeting:

- Gudrun Hiller: Moving ahead with flavor, T 48.1, today at 9:45
- Michel De Can: Highlights from the LHCb experiment, T 48.2, today at 11:00

Measurement of $B_s^0 - \overline{B}_s^0$ mixing and the CKM angle γ

BERGISCHE **UNIVERSITÄT WUPPERTAL**

Measure frequency of $B_s^0 - \overline{B}_s^0$ mixing in $B_s^0 \rightarrow D_s^- \pi^+ \pi^+ \pi^-$

 $\Delta m_s = 17.757 \pm 0.007 (\text{stat.}) \pm 0.008 (\text{syst.}) \text{ ps}^{-1}$

- Relative precision: 6×10^{-4} . More precise than the world average!
- Simultaneous calibration of production-flavour tagging algorithms in the fit.
- Use decay channels $B_s^0 \to D_s^{\mp} K^{\pm} \pi^{\pm} \pi^{\mp}$ to determine

 $\gamma = (44 \pm 12)^{\circ}$ modulo 180°

- Evidence for mixing-induced CP violation at the level of 4.4 s.d.
 - Agreement with world average: 2.2 s.d.

arXiv: 2011.12041

Measurement of the CKM angle γ in $B^{\pm} \rightarrow DK^{\pm} / D\pi^{\pm}$

- Analysis done in bins of *D*-decay phase space (Dalitz plot): \rightarrow avoids assumptions on variation of the strong-phase across phase space.
- $\gamma = (68.7^{+5.2}_{-5.1})^{\circ}$ Result:
- Most precise single measurement! arXiv: 2010.08483

0.8

0.6

0.4

0.2

50

68.3%

95.5%

60

70

28

CP violation in two-body B_d^0 and B_s^0 decays

Angular analysis of the decay $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

15

 $q^{2} [\text{GeV}^{2}/c^{4}]$

Hadron spectroscopy: 59 new particles discovered

BERGISCHE UNIVERSITÄT WUPPERTAL

Part 4

Searches for physics beyond the standard model

More on "Searches" at this meeting:

- Chris Malena Delitzsch: Looking inside jets jet substructure techniques and their application in ATLAS, T 49.2, today 14:30
- Jeanette Miriam Lorenz: Searches for electroweak supersymmetry: highlights, coverage and limitations, T 74.1, Thursday 14:00
- Katharina Behr: To the top and beyond: top quarks as a probe of new interactions at the LHC, T 74.2, Thursday 14:30

Search for a heavy CP-odd Higgs boson A

Recent physics highlights of experiments at the LHC Wolfgang Wagner

Interpretation in Two-Higgs-doublet benchmark models:

Limits as a function of m(A), m(H) and parameters α and β

arXiv: 2011.05639

- Consider only hadronic W-boson decays.
- Search for resonant structures in $m(\ell^+\ell^-b\bar{b})$ and $m(\ell^+\ell^-q\bar{q}q\bar{q})$ spectra.

Search for top squarks and dark matter

34

Search for top squarks in $t\bar{t}$ + jets final states

- Consider *R*-parity violation: the neutralino is unstable.
- Assume decay to light quarks.
- $E_{\rm T}^{\rm miss}$ is relatively small.

- Investigate benchmark model with $m(\tilde{\chi}_1^0) = 100$ GeV.
- Train neural network for separating signal and background.
- Top squarks excluded, if $300 < m(\tilde{t}) < 670 \text{ GeV}$

Search for leptoquarks

Upper limits on the LQ mass:

- m(LQ) > 0.98 to 1.02 TeV (scalar)
- m(LQ) > 1.34 to 1.73 TeV (vector)
- Depend on coupling assumptions.

arXiv: 2012.04178

- Leptoquarks carry both lepton number and baryon number.
 - Consider pair and single production simultaneously.
- Target $t\tau b\nu$ and $t\tau \nu$ signatures.

LQ

Search for long-lived particles producing displaced jets

- Use a multivariate discriminant to separate signal and background events.
- Cross-section limits are set as a function of $c\tau$ and m_X .
- In addition interpretation in various SUSY models.

arXiv: 2012.01581

Benchmark model: Pair production of long-lived neutral scalar particle X decaying to a $q\bar{q}$ pair.

 Search for events with displaced tracks and displaced vertices associated with a dijet system.

Part 5

Heavy-ion collisions

Coherent photoproduction of J/ψ and ψ'

BERGISCHE UNIVERSITÄT WUPPERTAL

Z = 82

 $q_1 = +Ze$

- Look at ultra-peripheral Pb-Pb collisions.
- Hadronic interactions are suppressed (→ event veto).
- Large charges → large cross-sections
- Coherent production of mesons: photon interacts with the nucleus as a whole.

arXiv: 2101.04577

• Reconstruct: $J/\psi \rightarrow e^+e^- / \mu^+\mu^- / p\bar{p}$ and $\psi' \rightarrow e^+e^-\pi^+\pi^- / \mu^+\mu^-\pi^+\pi^-$

 $q_2 = +Ze$

b > 2R

- Measure differential crosssections in the midrapidity range:
 -0.8 < y(ψ) < 0.8
 - Nuclear suppression factor due to gluon shadowing:

$$R_g(x,Q^2) = \frac{g_{\text{nuc}}(x,Q^2)}{g_{\text{prot}}(x,Q^2)} = 0.65 \pm 0.03$$

EE experiments at the Recent physics highlights of **Nolfgang Wagner**

Measurement of mixed harmonic cumulants

- Almond shape of overlap region creates an anisotropy of the pressure gradient in the transverse plane.
 → anisotropy of azimuthal particle distribution
- Express the single-particle distribution as a Fourier series:

$$P(\varphi) = \frac{1}{2\pi} \left[1 + 2\sum_{n=1}^{\infty} \nu_n \cos n(\varphi - \psi_n) \right]$$

- Fourier coefficient $v_n \equiv n^{\text{th}}$ -order flow coefficient
- Measure mixed moments of different flow coefficients for investigating correlations as a function of centrality.
- Important input for testing hydrodynamic and transport models describing the evolution of a quarkgluon plasma.

Conclusions

- Experiments at the LHC are measuring a impressingly broad range of particle physics phenomena.
- Test the standard model in various ways: precision measurements – indirect searches – direct searches
- Recent highlights include:
 - Super-precise Higgs-mass measurements at 1 pre-mille level.
 - Evidence for $H \to \ell^+ \ell^- \gamma$ and $H \to \mu^+ \mu^-$ decays.
 - Evidence for 4-top-quarks production.
 - Precise measurement of the CKM angle γ at 5° precision.

