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1. Introduction

The LHC - Large Hadron Collider - is the world’s largest particle accelerator. It is located near
Geneva, Switzerland and operated by CERN, the European Organisation for Nuclear Research.
Built to produce proton-proton and heavy-ion collisions at unreached levels on the energy scale
and unreached event rates, the twin beam collider has run at half of its design energy of 14 TeV
since 2010. Colliding particles are destroyed in the experiment, but the energy is conserved
and forms new elementary particles. Four detectors, ATLAS, CMS, ALICE and LHCb, are
installed along the accelerator tunnel to identify the collision products and provide insight into
the large number of processes involved. They collect information about the type, pathway,
energy and momentum of the collision products and gain a huge amount of data, analysed by
thousands of physicists all over the world. The Department for Experimental Particle Physics at
the Bergische Universität Wuppertal is involved in the ATLAS experiment, which contributes to
the development of its inner detector as well as working on the analysis of the data taken by the
experiment.
In 2011 the amount of data collected by the four detectors at LHC has been well increased to
more than 12.4 fb−1 (see section 2.3.1). This has generated a lot of public interest on LHC
and ATLAS as CERN has announced to continue this work throughout 2012 and expressed
expectations to answer the question of the existence or non-existence of the Higgs boson by the
end of 2012 [1]. The Higgs boson is the only fundamental particle, predicted by the theory of the
Standard Model, that has not yet been observed by experimental physics. A proof of its existence
is regarded to be an essential step in the progression of modern physics.
In order to produce the huge amount of recorded events, that are required for the statistics in
the search for the Higgs boson, the transverse size of the interaction region, in which the two
beamlines cross inside the ATLAS detector, has to be made as small as possible. Knowing its
size and position is of great importance, because the coordinates of the average interaction point
are used as parameters for the tracking process in real time during ATLAS runtime. Thus it is
computed “online” and updated several times per run. The recorded data allows additional offline
analysis of the structure and dynamics of the interaction region. This is what is examined in this
thesis with a focus on the spatial structure and the measurement precision of the recorded data.

1.1. Motivation

Measurements of the three-dimensional distribution of the interaction vertices allow for conclu-
sions about the transverse and longitudinal emittance and the luminosity of the LHC operations.
In 2011 the successful operations of LHC and ATLAS led to an outstanding increase in luminos-
ity production. During the year, the number of bunches per fill has been raised, the beta-function
at the interaction point has been levelled down to β ∗ = 1 m and the emittance of the injected
beams has improved. The evaluations for single runs can be drawn together and analysed with a
view to the changes of the beam parameters. With higher luminosity, LHC does not only produce
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1.2 Problem description

more events classified as primary events (the “events of interest”) but also generally a higher
amount of interactions per bunch crossing. This includes more events classified as pileup events,
that are of secondary importance regarding the aims of the experiment. Since the number of
interactions per bunch crossing is expected to rise significantly with the beam intensity, it is
of interest to examine the impact of the pileup events for the analysis of the luminosity region.
Knowing the spatial distribution of the precision of the data aquisition, the confidence intervals
of the interaction vertices, is an opportunity to estimate a correction for the statistical results of
the spatial vertex distribution. In order to follow this approach the underlying structures of the
measurement precision have to be understood as well.
Due to the stable performance of the LHC, there are numerous data sets for runs with stable
beams, lasting 10 hours and longer, which gives a good background to perform an offline analysis
of the luminosity region.

1.2. Problem description

The spatial distribution of the interaction region in the ATLAS detector at the LHC is the main
subject of this thesis. This includes the transverse and longitudinal size of the interaction region,
the position of the average interaction point and the orientation of the beamlines in the detector’s
coordinate system. The distribution of the measurement precision is analysed with a view on
the absolute values, spatial dependencies and its relation to the track multiplicity. The known
precision of the data acquisition is used to approach a correction of the given results. The findings
for the single runs are compared and presented in timelines to show the evolution over time
period between April 2011 and the end of June 2011.
The huge amount of data made it a challenge to automate the evaluations and to focus on the
efficiency of the used algorithms. The raw compressed data for the analysed runs, organised
in ROOT Trees [2], includes 563 GB. Even after extracting the required subsets of the original
datasets and reducing the information content per event to the level needed for the analysis, 25
GB of data still remained to be analysed, looping over it run for run. The data organisation
and visualisation was realised with ROOT, using its python interface PyROOT and python 2.
Computations were made using mathematical algorithms of the python extensions SciPy and
NumPy [3, 4].

1.3. Outline of thesis

A view on the physical background and technical aspects of the machines LHC and ATLAS
is given in section 2. Methods of beam acceleration and focusing are detailed in section 2.2
and the emittance as the conserved parameter to determine the beam quality is defined. Section
2.3 focuses on ATLAS and on the interaction region. The detector layout is delineated and the
luminosity as the key quantity to determine the productivity of the experiment is defined and
discussed. In the analysis part the spatial distribution of the observed events is shown and the
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beamspot position and width of the luminosity region are indicated by the visualisation of the
datasets. The first analysis focuses on one-dimensional projections and neglects correlations
between spatial directions. This is extended to an examination of the relations between transverse
and longitudinal coordinate distributions in section 4.3, leading to an adjustment of the coordinate
system to the observed beamline.
In section 5 a detailed analysis of the structure of the measurement precision is given, first by
observing the absolute dimension of the confidence intervals assigned to the vertices in section
5.1, then by looking at the spatial dependencies in section 5.2. The measurement precision is
also analysed as a function of the track multiplicity. In section 5 methods of vertex resolution
correction will be compared to take a more in-depth look at the observable data. The basic results
will also be reviewed against the distribution of the pileup events in section 7 and differences of
this distribution and the distribution of the primary vertices, observed in the analysed runs, are
addressed.

2. Physics background and experimental setup

LHC and ATLAS are flagships of the latest in experimental particle physics. A short picture of
their purpose and concept will be given in this section, before the presentation of the analysis.
The equations which count for the luminosity region are summarised in section 2.3.3.

2.1. Particle physics

The periodic table of elements, introduced by Meyer and Mendelew in 1869, illustrates a
pattern, which describes the atomic structure of all known matter. Atoms are understood to be
a composition of electrons, protons and neutrons, but until now the electron is the only one
of these building blocks which hasn’t been found to contain a further substructure. Thus the
electron is classified as an elementary particle, but neither a proton nor a neutron. The theoretical
system used to describe the structures on a subatomic scale beyond the periodic table is the
Standard Model. Being a quantum field theory, it distinguishes matter particles, the fermions,
and force-carrier-particles, the bosons.

2.1.1. Fermions, the matter particles

The Standard Model explains the protons and neutrons as a composition of three quarks, pre-
senting two different types, namely up and down. The up-quark u has a charge of 2/3 and the
down-quark d has a charge of −1/3, given in units of the elementary charge e. The proton
contains two up-quarks and one down-quark, resulting in its charge of +e, the neutron contains
one up-quark and two down-quarks. The up-quark and the electron are stable particles, but the
down-quark can decay into an up-quark. This is the process taking place in the decay of free
neutrons. Together with the electron neutrino νe, teh up-quark, down-quark and the electron
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2.1 Particle physics

form the so-called “first generation” of matter particles. The neutrino is the most puzzling of
these four elementary particles, because even today its mass remains undetermined, known only
to be less than 2 eV. It carries no charge and shows almost no interaction with other particles.
Each second any squarecentimeter on the surface of the earth perpendicular to the sun is passed
by more than 6 ·1010 neutrinos, that originate from nuclear processes in the sun [5]. The neutrino
is very different from the other three fermions of the first generation, since is not found basically
bound to atoms.
The Standard Model is also sufficient to describe the second and third generation of fermions as
well. It predicts two corresponding versions of each of the four elementary matter particles of
the first generation, that have the same electric charge as their first generation particle, but higher
masses in higher generations. These particles are unstable and have lifetimes of the smallest
fraction of a second. They decay into particles with lower masses and at the end of the decay
process the stable particles of the first generation remain. All of the 12 fermions have been
observed in experiments with particle accelerators. The fermions and their properties are listed
in table 1. Its subdivision into quarks and leptons is based on the forces, which interact between
the fermions. This is explained in the next paragraph.

Table 1: Table of fermions. This part of the Standard Model describes the matter particles. All
have spin s = 1/2 and follow the Fermi-Dirac statistics. The particle type is referred to
as flavour f , the particle mass m is given in GeV/c2 [6].

1st generation 2nd generation 3rd generation
charge f m f m f m

Quarks 2/3 up (1.7−3.1) ·10−3 charm 1.3 top 173
Quarks −1/3 down (4.1−5.7) ·10−3 strange 0.1 bottom 4.2
Leptons 1 e 5,11 ·10−4 µ 0.11 τ 1.78
Leptons 0 νe <2 ·10−10 νµ <2 ·10−10 ντ <2 ·10−10

For each quark and each lepton, a corresponding antiparticle exists, which has the same mass,
but the opposite charge. These antiparticles are not found as stable particles on the earth. They
are observed in experiments with particle accelerators and in the secondary cosmic radiation.
Altogether, there are 24 types of fermions, described by the Standard Model.
Besides the proton and neutron, other different combinations of two or three quarks have been
observed, all resulting in effective charges of either 0 or ±1 or ±2. They are collectively labelled
under the term hadrons. Particles composed of three quarks or three antiquarks are labeled
baryons. Particles that consist of one quark and one antiquark, where quark and antiquark can in
general be of different flavour, for example uc̄, are called mesons.
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2.1 Particle physics

2.1.2. Bosons, the force-carrier particles

Adding up the masses of the up and down quarks, combined in protons and neutrons, results in
masses far lower than actually observed. For the proton, the sum of the quark masses is less
than 1% of its mass of 0.938 GeV. The explanation for this is the presence of the binding energy
which keeps the three quarks bound to each other. According to the theory of relativity, masses
can be assigned to these quantized energies, given by E = mc2 ⇐⇒ m = E/c2. The Standard
Model explains the bindings by the exchange of virtual force-carrier particles that are listed in
table 2. The so-called strong force interacts between quarks. That is the background for the
subdivision of the fermions into leptons and quarks, as leptons remain unaffected by this force.
The strong force also interacts between its exchange particles, which is different to the other
forces. The charge that applies to the strong interaction is described in terms of colours. Because
there are three different types of colour charge present, the terminology of plus and minus used
to describe the electrical charges is not sufficient. The used expressions are red, blue and green,
but these colours do not correspond to the visible colors in any way.
The theory which explains the strong interaction in terms of colour is the quantum chromody-
namics QCD. The virtual force-carriers that are described by QCD are the gluons. There are
eight types of gluons. They have a very short interaction range and only act inside the hadrons
and between them. They keep quarks bound inside hadrons and hadrons bound inside the nuclei.

Table 2: Table of bosons. All have spin s = 1, they follow the Einstein-Bose statistics.
bosons notation charge (weak-isospin) mass in GeV/c2 force
photon γ 0 0 electromagnetic electroweak

W bosons
W− -1 80.4 weak electroweak
W+ +1 80.4 weak electroweak

Z boson Z0 0 91.188 weak electroweak
8 gluons g color charged 0 strong strong

In comparison to the strong force, the weak force affects all fermions, quarks as well as
leptons, but none of the bosons. It has been unified with the electromagnetic force, described
by one theory, the electroweak force. The exchange particles of the weak interaction are the
W+, W− and Z0 bosons that carry a weak-isospin ~T . In the process of quark flavour changing, a
W− boson is emitted, when a down-type quark changes to an up-type quark and a W+ boson
is emitted, when an up-type quark changes its flavour to a down-type. This way, the weak
interaction explains the beta decay as illustrated by the Feynman graph in figure 1.

In the table of bosons, there is no Higgs boson listed, because from the present point of view it
is a hypothetical particle as it has not been observed in any experiments. The Higgs boson is
proposed to have spin s = 0 and to interact with all elementary particles that have a mass m > 0.
It is proposed to be the theoretical explanation for exactly this property. The Standard Model
includes the Higgs boson, but there are “Higgsless theories” which favour different arguments.
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Figure 1: The W−boson as exchange particle in the beta decay n→ p+ e−+ ν̄e. One of the
down quarks in the neutron changes its flavour to up type, emitting a W− boson. The
boson decays into an electron and an electron antineutrino.

2.1.3. Questions about the Standard Model

The Standard Model is sufficient to describe the elementary particles that have been observed
in experiments with particle accelerators. But there is still a set of open questions and a lot of
reasons for further research.

• The unifying of the electromagnetic and weak force to the theory of the electroweak force
calls for an unified theory that includes the strong force as well. Can the Standard Model
be extended that way?

• The Standard Model does not include the gravitation in the particular force-exchange
processes. On an atomic and subatomic scale it can be neglected in praxis, since it is many
orders of magnitude weaker than the three other forces. But a complete theory should of
course explain gravitation as well. What is the nature of the proposed force-carrier, the
graviton?

• Why are there additional generations of particles and why three of them? Are there
particles with even higher masses, yet unrevealed by experimental physics and theory?
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2.2 LHC

• Will the existence of the Higgs boson be proved? Is the Higgs mechanism the reason for
the mass of elementary particles? Can the numeric values for these masses be derived
from theory?

• Astrophysics brought insight into the existence of dark matter. Can this matter be included
into the Standard Model?

• How did matter become the dominant form of fermions and not antimatter?

2.2. LHC

To possibly answer the open questions about the Standard Model, an impressive effort is being
made, to build experiments used for this research. In the search for the Higgs boson and for
elementary particles with even higher energies, the rest energy required for their emergence has
to be merged into a space small enough for the strong interaction to work, which is on a fm scale.
The basic concept of the LHC accelerator is to let protons and heavy ions collide at high energies
to meet exactly this condition. It is operated with proton fills in the majority of runs and the three
detectors ATLAS, CMS and LHCb are designed with a focus on this operation mode. ALICE
(A Large Ion Collider Experiment) focuses on the Pb+82 collisions to study the physics of the
quark-gluon plasma created by these collisions.
The LHC has been developed to explore new ranges at the energy scale. Its design aims at a
collision energy of 14 TeV. To prepare for this run mode, the collider will be shut down for a
longer technical stop, after the current stage of commision at 7 TeV has been completed. This
will not be the case before the end of 2012 [1]. The runs analysed in this thesis all have a
collision energy of 7 TeV in the mass center system and are proton fills only. The protons in
each beam have an energy of 3.5 TeV, what corresponds to a speed of v = 0.99999996c, just
4 ·10−6% below the speed of light in vacuum.
The LHC is built in the tunnel of the former LEP electron-positron collider at CERN. The tunnel,
illustrated by figure 2, has a length of 26.659 km and lies 50-175 m underneath the border of
Switzerland and France. At 3.5 TeV the revolution frequency of an accelerated proton is 11.245
kHz. The beams are kept in two beam tubes and only cross inside the four experiments. The
tubes have to provide an ultrahigh vacuum of 10−10−10−9 mbar [7]1 to avoid losing protons
which are destroyed in collisions with restgas particles.

1All technical information provided in section 2.2 is based on the LHC Design Report Volume I and III. To avoid
its too frequent usage, [7] will be added only, when the Design Report is cited literally.
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2.2 LHC

Figure 2: The Large Hadron Collider and the four detectors [8]. ATLAS is surrounded by the
SPS accelerator. It has a circumference of 6.9km and is used as the injector for the
LHC. The several other facilities at CERN are not shown in this image.

2.2.1. RF and bunch structure

A chain of four accelerators (Linac2 - Proton Synchrotron Booster (PSB) - Proton Synchrotron
(PS) - Super Proton Synchrotron (SPS)) [7] accelerates the protons to 450 GeV, before they are
injected into the LHC. A synchrotron radiofrequency (RF) of 400 MHz is used to accelerate,
capture and store the injected particles. The RF has to be provided by two independent systems
of cavities, because both particle beams have a positive charge. It is realized by a series of
gaps and cavities, shielding the beams from the decelerating phase and exposing them to the
accelerating phase.
Approximately 20 minutes after injection, the full design energy is achieved and the RF is used
to store the beam and keep the particles collected into bunches. This is often compared to
waveriding, since the position of the synchronous particle is at the slope of the RF waveform.
Particles which arrive ahead of the synchronous particle receive a smaller amount of energy and
become less accelerated; in turn particles which travel behind the synchronous particle receive a
higher acceleration and catch up with the synchronous particle. The particles oscillate around the
position of the synchronous particle. After acceleration the phase of the RF focuses the highly
relativistic protons at the synchronous position at the falling edge of the RF. That way the RF
keeps the particles in a bunch structure which is already predetermined before the injection, since
SPS applies the same principle and injects bunches of about 1.2 ns in length. Because the RF has
to be harmonized with the revolution frequency, the number of stable positions for synchronous
particles, so-called buckets, depends on both frequencies. This is called the harmonic number, in
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the LHC it is
fharmonic =

400MHz
11.245kHz

≈ 36000 (1)

For the adjustment of the bunch crossing frequency a minimum gap of 9 buckets is kept unfilled
between used buckets, aiming at a bunch distance of 25 ns. In the 7 TeV runs examined in this
thesis, the bunch spacing is 50 ns, since a maximum of every 20th bucket is filled. Counting
the 3600 buckets which can be potentially filled following the 25 ns design, the bunches are
assigned to unique bunchcrossing IDs. This provides the opportunity to conduct evaluations with
respect to single bunch pairs. Figure 3 shows the bunch filling scheme of run 184169. The gaps
of single bunch crossing IDs left out in this 50 ns run is not resolved at the used scale, but it
is illustrated that an additional structure is formed, building so-called bunch trains, by leaving
longer gaps between groups of consecutive bunches. The design aims at a maximum of 2808
bunch crossings per beam turn with 1.15 ·1011 particles per bunch.

Bunch Crossing ID
0 500 1000 1500 2000 2500 3000 3500

0

1

Figure 3: Bunch filling scheme of run 184169

2.2.2. Transverse dynamics and focusing

In contrast to the impression given in figure 2, the LHC is not a perfect cycle, but consists of
eight arcs and eight straight sections. In the arcs, the beam is curved to the pathway by dipole
magnets using the Lorentz force

~F = e
(
~v×~B

)
(2)

Because both beams have particles of positive charge, but an opposite direction of~v, they require
their own magnetic fields with ~B also pointing in opposite directions, too. The coordinate
system, in which the directions are expressed, is moved with the beam. With the z-direction
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pointing parallel to beam 2, the x-direction 90◦ horizontal towards the center of the collider
ring and the y-direction 90◦ vertical, the coordinate system is right-handed and orthogonal. The
magnetic field for beam 1, travelling clockwise, points in positive y-direction whereas the field
for beam 2 points downwards. LHC applies the twin-bore technology to provide these fields in
the same electro-magnets with a distance of only 194 mm between the two beams. The magnets
provide fields of up to 8.33 T in 14 TeV runs which is achieved by using superconductivity at
temperatures below 2 K. 1104 of those magnets are installed along the 8 arcs. The ensemble
of magnets along the collider ring is referred to as lattice. 128 additional dipole magnets are
installed along the ring at the transition points between arcs and straights. Their purpose is to
suppress dispersion of the beam optics. Each of the dipole magnets is more than 14 m long and
weighs about 35 tons.
Because the protons tend to diverge from the bunch due to the electromagnetic force between
them, the beam has to be focused in all three spatial dimensions. In longitudinal direction, this
is done by the RF, as described in section 2.2.1. In the transverse direction, this is done by
quadrupole magnets leading to the same pattern, having the particles carrying out oscillations
around the orbit of the synchronous particle. Their effect on the beam can be described by
focusing and defocusing lenses. The transverse motion is analysed for the particle ensemble
of the beam, by looking at the evolution of the envelope functions Ex(s) and Ey(s), where s

refers to the position along the orbit. A quadrupole that focuses the beam in the x-z-plane acts as
defocusing in the y-z-plane and vice versa. Because of this effect, the focusing system consists
of a series of pairs of quadrupoles building a 90◦-FODO-lattice. F refers to a quadrupole that
focuses in the x-z-plane, D to a quadrupole that acts defocusing in that plane. O represents the
straight drift sections between the quadrupoles. The oscillation of the single particle around the
orbit of the synchronous particle is described by

x(s) =
√

ε
√

βx(s)cos(Ψ(s)+φ) (3)

where the amplitude is given by a constant
√

ε which is given by the initial conditions of the
beam in the product with a modifying factor β (s) and changes with the quadrupole field strength
along the orbit. The emittance ε is the key value in measuring the beam quality. The phase
advance of the oscillation Ψ(s) also depends on the quadrupole field strength, while φ is given
by the beam conditions and acts as an initial constant. When the amplitude is large due to low
focusing by the quadrupole field, β (s) is large and the phase advance is low. In turn when
the amplitude is low due to strong focusing, β (s) is low and the phase advance is large. Ψ(s)

depends on the beta-function β (s) as in equation 4.

dΨ(s)
ds

∝
1

β (s)
=⇒ Ψ(s) =

sˆ

0

1
β (σ)

dσ (4)
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A detailed discussion of equations 3 and 4 is given in [9]. Calculating the derivation of equation
3 gives the divergence x′.

x′(s) =−
√

ε

β (s)
sin(Ψ(s)+φ) (5)

Rearranging the equations for x(s) and x′(s), such that the trigonometric functions are isolated,
and using that cos2 (Ψ(s)+φ)+ sin2 (Ψ(s)+φ) = 1 gives equation 6, where α(s) =−β ′(s)/2 .

ε =
x2

β (s)
+

(
α(s)√

β (s)
x+
√

β (s)x′
)2

(6)

Defining γ(s) = (1+α2(s))/β (s), this equation can be modified, leading to the Courant-Snyder
ellipse equation [10].

ε = γ(s)x2(s)+2α(s)x(s)x′(s)+β (s)x′2(s) (7)

The motion of each particle describes an ellipse in phase-space, lying within the ellipse described
by the envelope functions that has the area

A = πε (8)

The used coordinates x(s) and x′(s) comply with the Hamiltonian canonical coordinates p and q.
The area of this ellipse and thus ε is conserved, according to the Liouville Theorem, that states
that for the canonical coordinates we have

ˆ
pdq = const (9)

While the orientation of the ellipse in the phase-space is altered by the beta-functions, the
emittance describes the beam quality along the whole orbit. Behind a focusing quadrupole, the
ellipse is vertically oriented, with small dimension in x and larger dimension in x′. Behind a
defocusing quadrupole, the ellipse is horizontally oriented with large dimension in x and smaller
dimension in x′. Figure 4 shows the phase-space ellipse at the transition between a focusing and
a defocusing quadrupole. Because the beam enters a focusing cell with a broader beamwidth and
enters a defosusing cell with a smaller beamwidth and the strength of the dipole field increases
with the distance from the orbit of the synchronous particle, the effect of passing a complete
FODO-cell is a gain of focus in both transverse directions. Calculating the maximum of x(s) in
equation 7, for particles that move inside the orbits described by the envelope functions, results
in

|x− x̄| ≤
√

εxβx(s) (10)

as illustrated in Figure 4. Thus, the beamwidth around the orbit changes with the focusing
quadrupole field, but knowing both values, the emittance and the beta-function, gives conclusions
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Figure 4: Phase-space ellipse of the particle motion in the x-x’-space [10].

about the beamsize along the orbit.
To minimize the size of the interaction region, the beta-function at the interaction points has to
be as low as possible with regards to the limitations of the beam optics behind the interaction
point. Because of the outstanding role of the beta-function at the interaction point, it is denoted
to be differentiated from the beta-functions at other locations along the orbit as β ∗. Figure 5
illustrates the relative beamsizes around the interaction point in the ATLAS detector. Most runs
are operated with a crossing angle of 120 µrad between the two beams. Because the beams
share a common beampipe of approximately 130 m length at the interaction point of the ATLAS
detector, parallel beamlines for the production of head-on collisions would, given a 25 ns bunch
distance, produce 34 unwanted, parasitic collision points, leading to a quick loss of beam intensity
[7]. The beamlines in figure 5 show the effects of the crossing angle orbit bumps, magnets that
separate the two beams just behind the detector.
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Figure 5: Relative beamsizes around the interaction point in the ATLAS Detector [11].

2.3. ATLAS

ATLAS - A Toroidal LHC AparatuS - is built at intersection point 1 of the LHC and designed
as a multi-purpose detector, capable of working in both, proton- and heavy-ion experiments.
Its enormous dimensions are 44 m in length, 22 m in height and 7000 tons in weight [12]2.
Figure 6 provides a cut-away view that illustrates the size and complexity of ATLAS. It can be
subdivided into three subdetectors, built around the interaction point in the centre of the detector.
In transverse direction the detector layers are installed concentrically around the beryllium
beampipe and two endcaps and the endcap-magnets complete the detector in the longitudinal
directions.

• The INNER DETECTOR tracks the particles and measures their momentum. It is cylindrical
with a length of 7m which begins 5.5 cm away from the beam axis and ends at a distance
of 108.2 cm. A solenoid magnet system surrounds the inner detector and provides a 2 T
strong field which curves the tracks of charged particles. The inner detector consists of
three parts, the pixel detector with 80.3 million readout channels, the silicon microstrip
tracker (SCT) with 6.3 million channels and the xenon-based straw-tube transition radiation
tracker (TRT) with 0.35 million channels. The inner detector reaches a resolution of 10
µm transverse and 115 µm longitudinal in the pixel-detector, 17 µm transverse and 580
µm longitudinal in the SCT and 130 µm in all directions in the TRT. The fine-grained
pixel structure consists of sensor elements of 50×400 µm2.

• The CALORIMETER SYSTEM absorbs most of the particles and measures their energies. It
is built to detect electromagnetic particle showers caused by photons and electrons and
hadronic showers, so-called jets. It determines the transverse energy of the detected parti-

2The technical information in this section is based on „The ATLAS Experiment at the CERN Large Hadron
Collider” [12], published by the ATLAS Collaboration. To avoid the too frequent usage of citing this source, it
will only be given, where cited literally.
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Figure 6: Cut-away view of the ATLAS Detector [12]

cles ET and the missing transverse energy Emiss
T , to collect information about undetected

particles. Because neutrinos cannot be expected to be absorbed in the ATLAS detector,
their momentum can only be observed due to missing transverse energy. With a view
to avoiding hadrons breaking through into the muon system, it absorbs energy in lead
and stainless steel layers. It consists of two parts, the electromagnetic calorimeter with
a granularity of min. 0.025×0.025 rad and the hadron calorimeter with a granularity of
min. 0.1×0.1 rad. In the region |η |< 1.475, the inner parts are liquid-argon calorimeters
located in the cyrostat of the superconducting solenoid magnet, and the outer parts used
for the hadronic calorimetry which are less cost-intensive iron-scintillator tile-calorimeters.
In the region |η | > 1.35 liquid argon calorimeters, located in the end-cap cyrostat, are
used for both hadrons and electromagnetic calorimetry.

• The MUON SYSTEM measures the momentum of muons which are not expected to be
stopped in the calorimeter system. It is the largest detector part, beginning 4.25 m away
from the beam axis and ending in 11 m distance. It has 1 million readout channels in 4
subdetectors, including high precision tracking chambers. The muon system lies in a 0.5 T
magnetic field generated by two end-cap magnets and the barrel toroid magnet. This field
curves the muon tracks to achieve high precision momentum resolution.

At z = ±17 m two additional Cherenkov light detectors are installed for luminosity measure-
ments.
The angular range of particle tracks which is covered by the detectors is usually given as
pseudorapidity [12], defined by

η =− ln tan
Θ

2
(11)
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where Θ is the polar angle between the track and the beam axis. The function defining η is
symmetric by η(Θ+ π/2) =−η(Θ− π/2) with η(π/2) = 0, so the values for the pseudorapidity
ranges, listed in table 3, represent intervals around Θ = π/2. The inner detector is limited to
process tracks which have an angle with the beam axis of at least 9.4◦.

Table 3: Angular range covered by the subdetectors of the ATLAS Detector
detector pseudorapidity η minimum Θ in degrees

inner detector ±2.5 ±9.4◦

EM calorimeter ±3.2 ±4.7◦

hadronic calorimeter barrel and endcap ±3.2 ±4.7◦

hadronic calorimeter forward 3.1≤ |η | ≤ 4.9 ±0.9◦ ≤Θ≤±5.2◦

muon spectrometer ±2.7 ±7.7◦

2.3.1. Luminosity

The event rate generated by the LHC beams in the ATLAS detector is a key value in measuring
its performance. This rate is usually given normalized by the cross section σ of the examined
type of particle collision, which is set by the nature of the collision process. When examining a
number of collision types, the cross sections of the single processes are added up to the resulting
cross section. The normalized event rate is called instantaneuos luminosity.

L =
Ṅ
σ

(12)

For inelastic proton-proton collisions at 7 TeV, σ has been measured by the ATLAS Collaboration
to be 60.3±2.1 mb [13]. The common unit is the barn, having 1 b = 10−24 cm2. Integrating the
luminosity over a time interval, like a run or an operation period, gives the total number of events
normalized by the cross section. The integrated luminosity is usually given in inverse femtobarns
fb−1. During stable beams, for approximation in short intervals of time, the luminosity can be
treated as a constant. This is why the time axis in the produced datasets is divided into so-called
luminosity blocks, which have an average length of about 60 s. The luminosity falls during a
run because of the loss of the protons destroyed in the bunch crossings. Collisions with rest gas
particles and other effects leading to emittance growth cause further decreasing.
Figure 7 shows the luminosity for run 184169, recorded online for the luminosity blocks with
stable beams [14]. The run starts with a peak luminosity of 1.26 inverse nanobarns per second, so
according to equation 12, at the beginning of the run the rate of inelastic proton-proton collisions
is N = 1.26(nb · s)−1 ·60mb = 75.6 MHz. Divided by the revolution frequency of 11.245 kHz
and the number of bunches Nb = 1318, this corresponds to an average of 5.1 collisions per
bunch crossing at the beginning of the run. The luminosity of the ATLAS detector is expected
to rise above 1034 cm−2s−1, when the LHC will be operated at its full design energy. The
expected event rate is at least 600 MHz, with 19 collisions per bunch crossing at a bunch crossing
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frequency of 40 MHz [7].
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Figure 7: Online luminosity and beam intensity for run 184169, June 28 2011

To reach a higher luminosity, one has four parameters to optimize:

• revolution frequency

• number of bunches

• number of protons per bunch

• size of the luminosity region

Given that v w c, the revolution frequency of the highly relativistic protons cannot be increased
significantly. The first three of these parameters are found to be proportional to the luminosity,
the latter anti-proportional [10]. The area of the luminosity region in the transverse plane can be
described by an ellipse with A = π

√
εxβ ∗x

√
εyβ ∗y , using the relation between beamwidth and

emittance introduced in equation 10. Thus the luminosity can be given as

L =
f N1N2

π ·
√

εxβ ∗x εyβ ∗y

(13)

Figure 8 shows the evolving of the integrated luminosity during the proton-proton program
for the high luminosity experiments ATLAS and CMS, as well as for LHCb. The luminosity
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production of ALICE cannot be resolved at the used scale. It reaches about 5pb−1 in the same
period.

Figure 8: Luminosity production 2011 during the proton-proton physics program [15] .

2.3.2. Vertex reconstruction

ATLAS is not capable of processing and storing all data that amounts from a collision rate of
600 MHz or higher. But since the majority of the events do not match the energy scale and
processes that ATLAS aims to observe, it is neither necessary nor benefical to process the whole
amount of data. A multistage triggering system is in place to filter events for either storage or
deletion. The Level-1-Trigger (L1) is used to filter events in real time, reducing the data rate to
about 75 kHz. The Level-2-Trigger (L2) and the event filter (EF) introduce further limitations
to the process and reduce the data to about 200-300 Hz. The L2 trigger and the event filter are
together referred to as High Level Trigger (HLT). The challenge presented to the trigger system
implementation in the ATHENA frame work is in balancing the opposing demands of achieving
high resolution and saving CPU time used by the required algorithms.
The L1 trigger uses information of the calorimeters and the muon detector to trigger for a
minimum of ET and Emiss

T . The values can be adjusted in the trigger menu individually for
different event types, an overview is given in table 4. It builds tracks from the hits in the inner
detector and assigns the transverse momentum to those tracks. In normal operation it triggers
tracks with a pT ≥ 0.5 GeV and in minimum bias experiments this can be levelled down to
pT ≥ 0.1 GeV. Since the luminosity region is of order O(1000) larger in longitudinal direction
than in the vertical directions, the tracks are grouped into clusters by the z-coordinates from
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which they are fitted to originate [16].
The tracks cannot be assigned to starting points in the transverse plane due to the detector
geometry. Thus knowlegde of the beamline is of importance here in order to find the so-called
perigees, the points were the tracks are closest to the beamline. The coordinate system in place
here is different to the one described in the theory of the particle dynamics in section 2.2, since it
is not centred at the beam but at the centre of the ATLAS detector. The basic orientation, however
does match, since the positive z-axis points along the main axis of the detector in the direction of
beam 2, the x-axis points horizontally to the centre of the LHC and the y-axis upwards in vertical
direction.
The found clusters, so-called Region of Interests (ROI), are passed to the L2 trigger and invoke a
vertex fitting algorithm performed by the HLT. For each ROI, a list of tracks sorted by momentum
is processed, inside-out from the highest resolution pixel tracker to the TRT, extending the tracks
through the distances between the detector layers. Tracks which do not satisfy a predefined
fit quality are rejected at this stage, by setting a limit of the accepted χ2 to 8% [17]. The L2
trigger passes the vertex position and its covariance matrix as well as information about the
fit quality and the tracks to the event filter, where events are built according to the Event Data
Model (EDM).
The described method performed online is called “fitting after finding”. It is necessary to

Table 4: Trigger configuration used at the end of the 2011 proton-proton program and the
observed event rates [18]. The rates refer to a luminosity of 3.3 nb−1s−1. By triggering
for higher energies than the L1 trigger, the HLT decreases the event rates.

L1 trigger event filter
E in GeV/c2 Ṅ in Hz E in GeV/c2 Ṅ in Hz

single muon 11 8000 18 100
single electron 16 9000 22 55

two muons 11, 11 8000 15, 10 4
two electrons 10, 10 2000 12, 12 3

two taus 15, 10 7500 29, 20 15
2 photons 12, 12 3500 20, 20 5

single jet & Emiss
T 50, 35 800 75, 55 18

Emiss
T 50 600 70 5

multi-jets 5×10 200 5×30 9
<75000 214

bear in mind that the number of vertex candidates is set at the L1 trigger, and therefore a track
rejected by one of the fitting processes at the L2 trigger is not regarded by the processes fitting
the other vertex candidates. Additional offline performed vertex fitting algorithms can provide
improvements on this issue of the online performed algorithms using the “finding through fitting”
method. They initially fit all tracks to one single vertex at first and iteratively reject the tracks
that do not satisfy a χ2 limit to be originating from this vertex. Thereby an additional vertex
is formed by the rejected tracks and in the next step the probability for each track is computed
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for both vertices, creating a third vertex and so forth. Tracks that do not enter any vertex with a
probability of χ2 higher than 1% are finally rejected. Different implementations of this method
are part of the ATHENA framework [17].

2.3.3. Vertex distribution

The high rate of events allows significant statistics to be gathered regarding the size of the
luminosity region. The vertex distribution ρ in each of the three spatial dimensions is expected
to be Gaussian in good approximation. Equation 14 describes the three dimensional distribution
for one pair of bunches with Nb particles, disregarding time-wise effects [10].

ρ(x,y,z) =
Nb√

(2π)
3
σ

2

x,bσ
2

y,bσ
2

z,b

· e
− 1

2

(
x−x̄b
σx,b

)2
− 1

2

(
y−ȳb
σy,b

)2
− 1

2

(
z−z̄b
σz,b

)2

(14)

In this thesis σ
2

i,b = σ
2

i where i ∈ {x,y,z} will be set for all bunches and equation 14 is applied
to the distribution of the whole data set. The distribution in the x-z-plane is described by

ρ(x,z, t) =
N

2πσ
2
x σ

2
z
· e
− 1

2(
x−x̄
σx )

2
− 1

2(
z−z̄
σz )

2

(15)

Analogue equations count in the other principal planes of the coordinate system. Throughout this
thesis, equations for single coordinates will be given for the coordinate x to avoid the frequent
usage of the expression i ∈ {x,y,z}. It will be noted in the particular context, whether the
evaluations count in the transverse plane only, or whether they can also be deployed for the
longitudinal dimension as well.
For proton fills the beamwidth is usually given as the range |x− x̄| ≤ 2σ . Because the beamwidth
represents the dimension of the phase-space ellipse along the x-axis, equation 10 can be used to
determine the emittance by measuring the beamwidth.

εx =
(2σx)

2

β ∗x
(16)

Using this definition, equation 13, that expresses the relation between the transverse beamwidth
and the luminosity, can be written as

L =
f N1N2

4πσxσy
(17)

Since the standard deviation σ is the squareroot of the variance, it can be calculated from the
vertices of the recorded events using the computational formula for the variance:

σX =
√

Var(x) =
√

x̄2− x̄2 (18)
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This is applied by ROOT to compute the RMS along histogram axes.

2.3.4. Vertex resolution

The distribution of the recorded vertices, the observed distribution, has to be distinguished from
the real luminosity region. The real vertex distribution cannot be observed directly by examining
the vertex positions in the recorded data, since each entry is superimposed by the uncertainty of
the vertex fitting. Thus, the observed distribution is given by the result of the convolution of the
real vertex distribution with the distribution of the vertex resolution. Having the two Gaussian
functions ρreal(x) and ρres(x), describing both distributions, their convolution is given by

ρobs(x) = ρreal(x)∗ρres(x) =

 1√
2πσ2

real

e−
1
2

(
x−x̄real

σreal

)2
∗( 1√

2πσ2
res

e−
1
2(

x−x̄res
σres )

2
)

(19)

The convolution of the two Gaussian functions is again Gaussian and evaluates to equation 20
[19].

ρobs(x) =
1√

2π
(
σ2

real +σ2
res
)e
− 1

2
(x−(x̄real+x̄res))

2

σ2
real+σ2

res (20)

Given that the vertex resolution can be assumed to distribute around x̄res = 0, as it describes a
confidence interval, the observed beamspot coordinates x̄obs in all three dimensions are given as

x̄obs = x̄real + x̄res = x̄real (21)

Hence equation 20 can be simplified to

fobs(x) =
1√

2π
(
σ2

real +σ2
res
)e
− 1

2

(
x−x̄obs√
σ2

real+σ2
res

)2

(22)

which is a Gaussian distribution with the standard deviation given by equation 23.

σobs =
√

σ2
real +σ2

res (23)

3. Run selection

After a technical stop in January and hardware commissioning in February, LHC began recom-
missioning with beam at the end of March 2011. The full physics program was successfully
executed until the end of October, with just a few short technical stops. Runs with heavy-ion
beams were only performed over a period of three weeks in November and December. The
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proton-proton program had a total duration of 229 days and 5 hours, 23.5% of that time the LHC
provided stable beams for the experiments. This means that LHC provided stable proton beams
for ATLAS for a total of 54 days and 16 hours. The runs had an average duration of six hours
and there were a total of 49 runs lasting 10 hours or longer.
With a view to the size of the data sets, a selection of those runs has been chosen for this thesis.
At the time of data preparation, the only data available was for runs earlier than July 1st. This
limitation led to a selection of 23 runs, the first run starting on April 15th, the latest run starting
on June 28th. An overview of the runs and their beam parameters is given in table 3. Over the
analysed time period, the beam intensity has been increased by injecting more bunches, but
the average intensity per single bunch was stable at (2.36±0.12) ·1011 protons. The integrated
luminosity for the examined runs is 0.756 fb−1.
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4. Observed beamspot and beamwidth for primary vertices

As a preparation for the following evaluations, the distributions of the vertex positions in all
three directions are examined in this section. Their mean values represent the coordinates of the
average primary interaction point. The evolving of the observed beamwidth is compared for
the period covering all 23 runs. In the analysis part of this thesis, results of the evaluations for
single runs are always shown for the latest run, number 184169. Figures illustrating the results
are given for this run as well. Plots that show the central results for the other runs are attached to
appendix. The fill parameters of the 23 runs show only little difference, so a comparability of
the results for run 184169 with the other runs is expected. Parameters evaluated for the single
runs thus are collected together in timeline plots, to review the found results for the whole run
sequence and confirm the findings for run 184169.

4.1. Distribution in the ATLAS coordinate system

To find the average interaction point, the data for each run is used to fill a histogram, which is
then fitted by a Gaussian function. Figure 9 shows that in both transverse directions as well as
in the longitudinal direction, the observation and the model of a normal distribution agree well.
The relative error for the calculated σ is 0.06% transverse and 0.05% longitudinal. The average
beamspot error is 0.015 µm for x, 0.013 µm for y and 0.04 mm for z. Only for bins that lie close
to the mean of the histograms do the fit and the data have less conformity than at the slopes and
tails of the distribution.
The difference between the Gaussian distribution and the observed distribution that occures in
the bins close to the mean is observed to follow the same pattern in all examined runs. In the
transverse directions, the observed distribution shows significantly more vertices found in a
region of about 0.3 σ around the mean than would be expected in a Gaussian vertex distribution.
Opposite to this, in the longitudinal direction the values close to the mean lie slightly below the
fit function. This is found to be the same in all examined runs too.
The fit results are summarised in the timeline plots in figures 10 and 11 to examine the evolving of
the average beamwidth and the position of the average interaction point through the investigated
sequence of all 23 runs. Only the first run shows a larger deviation of the beamspot’s y-coordinate.
All other runs only show a low variation of the transverse coordinates in ranges of about±20 µm
in x-direction and between +40 µm and -20 µm in y-direction. Compared to the average
beamwidth, the beamspot moved in x-direction within a range of about 2 σx and in y-direction
within a range of about 3.5 σy. Compared to this, the relative variation of the beamspot in
z-direction is much smaller, since it only varies over a range of 15 mm, which is about a quarter
of the average σz.
In all examined runs the form of the transverse beam projection is not perfectly circular, but
an ellipse with a slightly smaller axis in y-direction, with an average of 19.2±0.6 µm, than in
x-direction, with an average of 21.06±0.7 µm. These mean values are calculated as the weighted
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4.1 Distribution in the ATLAS coordinate system

mean of the sets of the 23 average beamspot coordinates computed for the analysed runs. The
found results are listed in table 6.

Figure 9: Spatial distribution for all primary vertices of run 184169. The transverse distributions
show an accumulation of vertices close to the mean. The longitudinal distribution
shows a better agreement of model and observation.
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4.1 Distribution in the ATLAS coordinate system
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Figure 10: Spatial distribution using all primary vertices. The errorbars indicate the beamwidth
1σ range and 2σ range.

Table 6: σ for primary vertices, average over all 23 runs
Axis average σ average σ fit error

x in µm 21.06±0.7 0.06%
y in µm 19.2±0.6 0.06%
z in mm 56.3±1.8 0.05%
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4.1 Distribution in the ATLAS coordinate system
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Figure 11: Variation of the observed beamwidth for all 23 runs.
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4.2 Tilt in the ATLAS coordinate system

4.2. Tilt in the ATLAS coordinate system

The data entries are given in the coordinate system of the ATLAS detector. But the beamline does
not necessarily follow a path parallel to the longitudinal axis of this system. By looking at the
transverse beamspot coordinates along the beamline it is shown in this section, that the beamline
is orientated slightly downwards and to the left relative to the z-axis. Thus the transverse plane,
used for the calculations in section 4.1, is not exactly orthogonal to the beam. The slope of the
beamline in the transverse directions is called tilt in x-direction and in y-direction. The crossing
angle of -120 µrad has no impact on the position of the mean, because it is located between the
two beams and only affects the beamwidth along the z-axis. The route of the beamspot along the
z-axis is shown in figure 12.

Figure 12: Observed beamline tilt of run 184169 for both transverse directions. The z-interval
represents z̄±2σz, the interval on the vertical axis represents x̄±2σx, respectively
ȳ±2σy.

As expected, the beamspot positions in the 100 bins along the z-axis are fitted very well by the
linear functions. To avoid bins with low statistics in the outer region of the luminosity zone, the
range is limited to z̄±2σz. This cut along the z-axis is expected to contain more than 95% of the
vertices. The vertical axes ranges are also limited to x̄±2σx and ȳ±2σy, this corresponds to the
definition of the transverse beamwidth. The linear functions x = mx · z+bx and y = my · z+by

follow the beamline projections onto the x-z-plane and the y-z-plane. The slopes mx and my

represent the tilt in the particular transverse direction and the products mx · (z− z̄) and my · (z− z̄)

calculate the additional offset from the z-axis of the ATLAS coordinate system due to tilt. In x-
direction the tilt of run 184169 is (−7.6±0.3) ·10−6 mm−1, which is significantly smaller than in
y-direction where it is (−56±0.2) ·10−6 mm−1. With such a flat pathway, the tilt in x-direction
is almost negligible even on the small scale of the luminosity region. Figure 13 shows the tilt for
the other runs of the examined run sequence. The values of both series vary only in a small range
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4.2 Tilt in the ATLAS coordinate system

around the mean values m̄x = (−9.4±2.4) ·10−6 mm−1 and m̄y = (−51.7±3.7) ·10−6 mm−1.
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Figure 13: Observed beamline tilt in mm−1 for all runs. The plots show mx and my found by
the method used in figure 12. Both tilts are actually negative, but plotted with their
absolute values to improve the readability of the plots.

Figure 14 shows the findings expressed by the relative size of the offset that the tilt adds to the
beamspot position along a range of σz, compared to the observed σ in the transverse directions.
Calculated over all examined runs, the beamline tilt in x-direction has an average of -2.5±0.7%
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Figure 14: Observed beamline tilt for all runs, expressed by the ratio of the beam offset and
the beamwidth σ in the given direction. mσz is the offset that the tilt adds to the
beamline along a range of σz. Both tilts are actually negative, but plotted with their
absolute values to improve the readability of the plots.

of the half beamwidth σx. In y-direction, the effect is significantly stronger with an average of
-15.2±1.6% of σy. The tilt is illustrated in form of the found beamline in the plots in figure 15
Vertices that have a greater distance from the average interaction point along the z-axis, thus add
a systematic bias to the observed beamwidth, when it is calculated in the ATLAS coordinate
system. This is analysed in the next section, by an adjustment of the coordinate system to the
beamline and comparison of the results of the beamwidth evaluations in both coordinate systems.
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4.3 Rotation of the coordinate system

Figure 15: 2-dimensional distributions in the x-z-plane and the y-z-plane with the beamline
found by bin-wise fitting. The axis intervals are set to±5σ on all axes. The z-interval
is about 3000 times larger than the x- and y-intervals.

Finite binwidth effects This computation contains a less obvious bias that affects the bin-wise
average beamspot position along the z-axis. The beamline found in the vertical-longitudinal
plane still has a minimal deviation from the apparently somewhat steeper path one would draw by
hand. The negative y-tilt leads to an orientation of the ellipse in the y-z-plane that is equivalent to
the result of a clockwise rotation around the average interaction point IPyz = (ȳ/z̄). At any point
P = (y/z) in that plane, the gradient of the point density ∇ρ(y,z) is expected to be orientated
towards IPyz. This gives dρ(y,z)/dz > 0 for z < z̄ and otherwise dρ(y,z)/dz < 0 for z > z̄. This leads
to a mirror-symmetric effect in any interval ∆z0 = (z0−dz,z0 +dz), but the method of finding
the tilt relied on just such intervals. The rotation shifts points in the upper-left and lower-right
quarter of the ellipse with a parallel projection on the z-component of ∇ρy,z(y,z), but in the
lower-left and upper-right quarter with an anti-parallel projection. Thus for z0 < z̄ the point
density is decreased in the upper region of the interval and is increased in the lower region of the
interval, that way the mean is found too low.
In turn, for z > z̄, the point density is increased in the upper region of the interval and decreased
in the lower region of the interval and the mean is found too high. In the next section the impact
of this effect on the beamwidth measurements will be addressed, by rotating the coordinate
system to adjust it to the beamline and review the tilt again. Because the values for the tilt
determined in this section are used for the rotation, any tilt still present after this process can
seen as based on the analysed bias. The next subsection will show that this remaining tilt is on a
neglectable scale and the dicussed inaccuracy of the process is small even relative to the small
scale on the transverse axes.

4.3. Rotation of the coordinate system

As shown in the last section, the beamline is not exactly parallel to the z-axis, but has angles
with it in both the x- and y-direction. Following the beam along a distance ∆z in z-direction
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4.3 Rotation of the coordinate system

leads to an additional offset from the z-axis, given by dx/dz ·∆z = mx ·∆z in x-direction and by
dy/dz ·∆z = my ·∆z in y-direction. Thus the beam points from the interaction point to the point
(mx,my,1). To adjust the coordinate system to the beamline, this vector is used as the z′-direction
in the new coordinate system K′. Satisfying the condition that the new x′-axis is still horizontal
and orthogonal to the new z′-axis, it has to be parallel to the vector (1,0,−mx). The vector
product ~y′ =~z′×~x′ gives the new y′-direction and a right-handed coordinate system K′, with
the y′-axis parallel to the vector

(
−mxmy,1+m2

x ,−my
)

still pointing upwards. To achieve the
change of basis matrix T E

K′ , that has to conserve distances and angles, the new basis vectors have
to be normalized.

T E
K′ =

(
T K′

E

)−1
=


1√

1+m2
x
− mxmy√

(1+m2
x)(1+m2

x+m2
y)

mx√
m2

x+m2
y+1

0 1+m2
x√

(1+m2
x)(1+m2

x+m2
y)

my√
m2

x+m2
y+1

− mx√
1+m2

x
− my√

(1+m2
x)(1+m2

x+m2
y)

1√
m2

x+m2
y+1


−1

(24)

Since T K′
E is an orthogonal and normalized matrix,~x 7→ T K′

E ·~x is an isometry and the inverse is
simply calculated by transposition. Following this, the coordinates in the system K′ are calculated
by equation 25. The process of basis change is equivalent to a three-step rotation of the ATLAS
coordinate system (Euler’s rotation theorem).

x′

y′

z′

=
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1√
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(1+m2
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x+m2
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− my√
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y+1

my√
m2

x+m2
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 ·
x

y

z

 (25)

To speed up the computation of the coordinate transformation, the change of basis matrix can be
simplified by neglecting all terms of order O(m2), because m is at least of order O(10−4) smaller
than the coordinate entries in x and y. This simplified matrix isx′

y′

z′

=

 1 0 −mx

0 1 −my

mx my 1

 ·
x

y

z

 (26)

This basis is still orthogonal between z and the transverse directions, but the angle between the
x’-axis and the y’-axis, now in the rows of the matrix in equation 26, has to be neglected following
the same argument, since their product ~x′ ∗~y′ = mxmy is of order O(m2). The determinant is
1+m2

x +m2
y which can be approximated to be almost 1 following the same argument. It renders

30



4.3 Rotation of the coordinate system

the process much more readable, as it is clear at first sight that

x′ = x−mxz

y′ = y−myz (27)

z′ = z+mxx+myy

Taking into account, that mxx+myy is again small at the scale of the z-distribution, one can
further approximate by z′ = z. What remains is the substance of the process, which is subtracting
the offset brought in by the tilt from the transverse coordinates.
However, the coordinate transformation for the further evaluation was programmed using NumPy
[4] by implementing the exact equation 25, to avoid bringing new uncertaintes into the process.
Figure 16 shows the distributions in the x’-z’-plane and in the y’-z’-plane. The tilt is removed as
the ellipses appear to be orientated symmetrically around the z’axis, of which a parallel through
the beamspot is added to the plots. This line represents the projection of the found beamline in the
plots in figures 12 and 15. The repetition of the tilt-finding algorithm analogue to the procedure

Figure 16: 2-dimensional distributions in the x’-z’-plane and the y’-z’-plane after the rotation of
the coordinate system. A horizontal line shows the new position of the beamline that
was fitted before and shown in figure 15.

in section 4.2 shows that in both directions the average tilt taken over all runs is reduced by
(99.987±0.004)% of the value found before the rotation. In both transverse directions the
results of the algorithm determine the tilt in the coordinate system K′ to add an offset to the beam
in order of O(10−4)% of the transverse σ along a z-range of σz. The plots for the other runs are
shown in the appendix. The beamline in the y-z-plane leads to the same observation in all runs.
Before the rotation, the optical impression is that it is apparantly somewhat misaligned, but after
rotation this effect is no longer noticeable. In all of the following sections, evaluations will be
processed using the data sets transformed into the rotated coordinate system.
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4.4 Vertex distribution in the rotated coordinate system

4.4. Vertex distribution in the rotated coordinate system

The effect of the coordinate transformation on the beamwidth determination is reviewed in this
subsection by applying the same algorithms as in section 4.1. The results are not expected
to differ significantly, but the found beamwidth is expected to be systematically smaller in
the transverse directions, since these directions are adjusted to the minor ellipse axes. In the
longitudinal direction, the result is expected to be found systematically higher than in the ATLAS
coordinate system, because this direction is adjusted to the major ellipse axis. The minor and
major axes correspond with the ellipse diagonals of minimal and maximal length. The effect
on the average beamspot described in section 4.2 is mirror-symmetric, thus the result for the
beamspot position, after re-transformation into the ATLAS coordinate system, is expected to be
the same.
Figure 17 shows the results for this analysis for run number 184169. After the rotation the

Figure 17: Observed vertex distribution in the adjusted coordinate system

values for the beamwidth in the transverse directions are smaller and the value in the longitudinal
direction has not changed significantly. Figure 18 summarises the gained correction in percentage
of the beamwidth measured in the ATLAS coordinate system. In x-direction the average change
over all 23 runs is -0.036±0.095%. The error is the sum of the standard deviation of the mean,
which is only 0.017% and the propagated error for the beamwidth fits that is 0.78%, which
exceeds the value of 0.036%. Thus the decreasing of the beamwidth in x-direction is negligibly
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4.4 Vertex distribution in the rotated coordinate system
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Figure 18: Change of the measured beamwidth after rotation in percent of the beamwidth
measured in the ATLAS coordinate system.

small and cannot be confirmed within the fit precision.
In y-direction the effect is stronger and its negative sign can be confirmed within the propagated
error interval by -1.27%±0.33%. In z-direction, the propagated error has an average of 0.062%,
which exceeds the change of the measured beamwidth for every run. The sign of the beamwidth
change alternates and the values have order of O(10−2−10−4). The found average is even found
negative, but within the errors without significance. With an average of -0.004±0.1% the effect
of the coordinate transfromation in z-direction has to be seen as approximately zero. Table 7
compares the measured beamwidth in all three spatial directions before and after the rotation of
the coordinate system.
Figure 19 shows the effect of the coordinate transformation on the computation of the area of
the transverse beam projection. Since both ellipse axes in the transverse plane are measured as
smaller after the rotation, the average size of the ellipse of A = 4πσxσy is smaller for all runs. In
the ATLAS coordinate system it is measured to be (5.08±0.3) ·10−3 mm2, in the new system
K′ it is measured to be (5.01±0.3) ·10−3 mm2. The effect is low with an average correction of
-1.3±0.26% which basically originates from the correction of the tilt in the y-direction. This
correction is larger than the precision intervals of the ellipse areas for the single runs by a factor
10-30. The average value carries the standard deviation of the mean calculation which dominates
over the applied correction.

33



13Apr 20Apr 27Apr 04May 11May 18May 25May 01Jun 08Jun 15Jun 22Jun 29Jun

2
m

m

0.003

0.0035

0.004

0.0045

0.005

0.0055

0.006

0.0065

0.007

Figure 19: Area of the transverse beam projection with beamwidth 2σ in both transverse di-
rections. The black line shows the area after the rotation, which is smaller for all
evaluated runs with an average of -1.3±0.26%.

Table 7: Beamwidth σ for the primary vertex distributions. Comparison of the values in the
rotated coordinate system and in the ATLAS coordinate system. Average over all 23
runs.

average σ ATLAS average σ in K′
average σ fit
error in both

systems
x in µm 21.06±0.7 21.05±0.7 0.06%
y in µm 19.2±0.6 18.9±0.6 0.06%
z in mm 56.27±1.8 56.27±1.8 0.05%

5. Vertex resolution

The beamwidths discussed in section 4 were calculated by using only the recorded vertex
positions while ignoring the resolution of the fitted vertices. But each vertex position is a result of
the tracking process and carries an intrinsic uncertainty in all three spatial coordinates. Keeping
this in mind, a vertex cannot be seen as a sharp resolved point, but as a centroid with given
confidence intervals in all three directions. The picture of the luminosity region, drawn from the
results of section 4, contains significant blurring due to the resolution of each single vertex. In
this section the distribution of this blurring in the luminosity region is analysed and methods to
correct the beamwidth from the effect of the vertex resolution are compared.
In the analysed data the vertex resolution is given for each vertex and each coordinate as the
covariance computed from the track perigees that are assigned to the vertex. Following equation
28 this is related to a standard deviation assigned to each single vertex.
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5.1 Dimension of the vertex resolution

σresx =
√

Var(xtrk) =
√

Cov(xtrk,xtrk) (28)

Throughout this section, with a view to providing better comparability with the scale of the
luminosity region, the term “vertex resolution” always refers to the standard deviation σres.
Although the terminology could be confusing at some point, the resolution is referred to as
“lower” in case of higher values of σres and as “better” or “higher” in case of lower values of σres.
When calculating averages for this standard resolution, throughout all following sections this
will be calculated as

σ̄res =
√

¯Var =

√
1
N

N

∑
i=1

σ2
i (29)

When speaking of “correlation” between different coordinates or between the resolution and the
observed beamwidth throughout this section, this will always refer to the Pearson correlation
defined by

corr (X ,Y ) =
cov(X ,Y )

σxσy
=

E [(X−µx)(Y −µy)]

σxσy
(30)

The correlation factor is +1 in the case of total correlation and -1 in the case of total anticorrelation.
A correlation factor of corr (X ,Y ) = 0 does not prove the independence of X and Y . Additionally
the Spearman ρ-coefficient is used as a second indicator. This coefficient disregards the values
of the single data entries and only correlates the rank within the sorted sample.

5.1. Dimension of the vertex resolution

In this subsection the distribution of the absolute values of the vertex resolution is evaluated.
They are far from being on a neglectable scale compared with the observed beam width in the
transverse plane. The dimension of the longitudinal resolution is dominant in the ellipsoid of
each vertex, but is still of the same order as the dimension of the transverse resolution. While the
size of the luminosity region is of order O(103) larger longitudinal than transverse, this makes
the relative resolution σres,z/σobs,z of order O(10−3) smaller than σres,x,y/σobs,x,y.

5.1.1. Single run evaluation

The analysis of run 184169 shows that the average dimensions of the confidence intervals in
the transverse directions are Mean(σres,y) = 16.1±3.9 µm and Mean(σres,y) = 15.5±3.6 µm.
The average size of the transverse projections of the confidence ellipsoids thus almost covers a
range of one sigma of the beamwidth. Figure 20 is shown to illustrate the relative size of the
confidence ellipsoids on the scale of the measured beamwidth, since this illustrates the relative
resolution better than the variance.
But since the means above are calculated as Mean(σres) =

1
N ∑

N
i=1 σi they will not be used as

the average resolution σ̄res in the following analysis. This value is instead computed from the
average variance according to equation 29.
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5.1 Dimension of the vertex resolution

Figure 20: Distribution of the absolute value of the vertex resolution in the transverse directions.
The plot shows the histogram with a view towards the origin. The ridge of the vertices
with a good approximation of σres,x ≈ σres,y is clearly visible.

To stay on the scale of the beamwidth, the square roots of the average variances are given here
as σ̄res,x =16.6± 0.4 µm and σ̄res,y =15.9± 0.3 µm. The correlation factor between the both
transverse variances is +0.37. Compared with the average beamwidths σx,y-ranges given in table
7, the average resolution amounts to as much as 78.9±0.2% in x-direction and 82.0±0.2% in
y-direction. The distribution in figure 20 shows a clearly visible ridge along the diagonal that
corresponds to σres,x ≈ σres,y with a slight trend for lower values in σres,y.
Figure 21 shows the vertex resolution distribution along the three axes. It confirms that the
resolution distribution in both transverse directions is approximately the same. The distribution
along the z-axis can be plotted on a micrometer scale, too. The means of these distributions are
not shown in figure 21, because the average resolution is computed using equation 29.

In figure 22, the relation between σres,y and σres,x is analysed with a histogram that shows the
ratio between the vertical and the horizontal resolution. This analysis shows that the two values
can be expected to be found with σres,y ≈ σres,x on average, but a broader range of transverse
profiles of the resolution ellipsoid can be found in the distribution. The y-resolution can amount
to less than half or more than double the x-resolution, although these are rare events. The median
of this distribution is 0.96, the maximum is reached at 0.95. The mean is not sufficient to describe
the peak, since the range bound at zero from below but has no upper bound. Both means, the one
of σres,y/σres,x and the one of σres,x/σres,y evaluate to more than +1. The median of course divides the
set in half and evaluates to 0.961 and 1.039 respectively. There is a clear trend towards better
resolution in y-direction. The histogram shape of the distribution in figure 22 can be found along
the slices of the x-axis bins in the resolution distribution in figure 20 and explains that the ridge
in that distribution follows the pathway of y≈ 0.96 · x.

36
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Figure 21: The distribution of the vertex resolution of run 184169 for the three spatial directions.
The transverse distributions don’t have significant differences. The longitudinal
distribution can be plotted on a micrometer scale.

Because its distribution is close to symmetry, the transverse resolution can be reviewed versus
the longitudinal resolution as one conflated parameter, computed by equation 31. This avoids
doubling the discussion at this stage by diversifying it into both transverse directions.

σres,x ·σres,y = σres,x,y =
√

Varres,x ·Varres,y (31)

This combination of the both transverse resolutions is the radius of a circular region around
the vertex that represents the confidence region of the vertex fit in the transverse plane in
micrometers.
Figure 23 shows the distribution of the absolute value of the vertex resolution by comparing

its longitudinal and transverse dimensions. But analogue to the analysis in the transverse plane,
the mean values differ from the expectation value for the standard deviation, which is computed
from the square root of the average variance again. The correlation factor between both axes has
a value of +0.78. A clear-cut ridge shows the strong dependence of the transverse resolution on
the resolution along the beam axis. The resolution in the transverse directions can be expected to
be better for vertices with a good resolution along the beam axis and vice versa. The average
resolution in z-direction is 43.5±11.2 µm. This is a factor 3 higher than the average transverse
resolution σres,x,y =

√
σres,x ·σres,yx which is 15.5±3 µm. Its effect on the observed longitudinal
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Figure 22: The distribution of the ratio of the vertical and horizontal resolution has its median at
0.96. The maximum is reached at 0.95. Only few vertices have a resolution that is
higher in one direction by a factor two than in the other direction.

size of the luminosity region is neglectable, since it amounts to only about 0.8·10−4% of the
beamwidth presented in table 7. This makes an attempt to correct the longitudinal beamwidth
from the vertex resolution dispensable.
Figure 24 shows the profile of the transverse versus londitudinal resolution. The bin-wise means
are following the path of the ridge observable in the plot in figure 23. For values lower than
the mean in z-direction, the dependence is stronger and even almost linear, for values higher
than the mean the slope decreases. This graph indicates that the determination of the transverse
beamwidth gains precision when the analysis is limited to vertices which have a good resolution
along the z-axis.
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5.1 Dimension of the vertex resolution

Figure 23: Transverse vs. longitudinal vertex resolution. The distribution has a sharp peak and
a clear-cut ridge. The transverse resolution is a strong function of the longitudinal
resolution. The plot shows the standard deviation at the scale of the luminosity
region, the means differ from the average resolution that is computed using equation
29.
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Figure 24: The transverse resolution depends on the longitudinal resolution with which it is
monotonically increasing, but with decreasing slope. The bins above σres,z=100 µm
contain only 1.8% of the events. Shown is the square root of the bin-wise average
variance σres,x,y.
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5.1 Dimension of the vertex resolution

5.1.2. Evaluation for the set of investigated runs

The findings of the evaluations of the other runs are very consistent with the evaluation of run
184169. They are collected and analysed in the following timeline plots with a view on the
correlation between the vertex resolution and the observed transverse beam projection. Through
the run sequence there is no clear trend indicating a systematic change with the beam parameters.
However, while the beamwidth changes within a small range, the resolution is rather expected to
show a more stable development, since the tracking algorithm remains the same and operates on
single events which can be expected to be distributed according to comparable rates of event
types in all examined runs.
A dependence of the observed beamwidth on the average resolution is obvious, based on the
convolution discussed in section 2.3.4. In turn a dependence of the average resolution could
be based on the start parameters of the tracking process which involves the average beamspot
and beamwidth computed online during ATLAS operations. As described in [16], the HLT is
updated several times per run, triggered by either a change of the observed beamwidth of 10% or
more, a change of the beamspot position of 10% of the beamwidth or by a reduction in any of
the errors of 50% or more.
Figure 25 shows the observed beamwidth (one σ ) and the resolution for all three axes. As
expected, the resolution moves in a smaller range than the beamwidth. Both series have a strong
correlation in the transverse plane, but a lower correlation in the longitudinal direction. The
values are listed in table 8.

The average resolution calculated for all runs amounts to 79.3±1.5% in x-direction and
85.2±1.7% in y-direction compared to the average beamwidth 1σ . In z-direction the resolution
is less than 10−3% of the length of the luminosity region and thus it is not relevant for the
beamwidth determination. The observed correlation can be assumed to be based on the feedback
process of the HLT, since the small variations in the resolution would be expected to cause only
small changes of the observed beamwidth. Thus the more probable relation is the mapping of
the online determined beamwidth into the resolution set.

Table 8: Average resolution, beamwidth and ranges defined by σmax− σmin. The standard
deviation is included in the errors. The propagated fit errors of σobs are included as
well, while the average resolution per run is the calculated mean taken from the data
sets.

unit σres-range σobs-range average σ̄res σ̄obs corr (σres,σobs) Spearman ρ

x µm 0.89 3.1±0.02 16.7±0.2 21.05±0.7 0.91 0.95
y µm 0.79 2.3±0.02 16.1±0.2 18.9±0.6 0.95 0.97
z mm 0.56 7.0±0.05 0.0435±0.0004 56.27±1.8 0.22 0.18

Figure 26 shows the results discussed for figures 20 and 22, where a trend towards better
resolution in y-direction than in x-direction could be observed. This follows the same pattern in
all 23 runs where both the size of the luminosity region and the size of the resolution ellipsoid
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Figure 25: Change of the measured beamwidth after rotation in percent of the beamwidth
measured in the ATLAS coordinate system.

are smaller in the vertical plane than in the horizontal plane. The correlation factor between the
two series is 0.95 and the correlation is observable at first sight on the plot. The calculation of
the Spearman ρ-coefficient evaluates to 0.92. The ratio σobs,y/σobs,x has an average of 96.2±0.3%,
while the average resolution in y-direction is evaluated to be σres,y = (0.904±0.01) ·σres,x. The
difference of the beamwidths in both directions is explainable due to the beam focusing, as
described in the discussion of the form of the phase-space ellipse in section 2.2.2. The HLT
could be expected to treat both directions as basically equal. But the clear trend towards better
resolution in the vertical direction indicates that the estimation of the perigees is influenced by
the information about the beamwidth. The resolution is calculated from the perigees according
to equation 28. The analysis in this section focused only on the absolute values of the reso-
lution, the next section reviews how the resolution quality distributes within the luminosity region.
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5.2 Spatial distribution of the vertex resolution
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Figure 26: Comparison of the transverse beamwidth ratio σobs,y/σobs,x with the median of σres,y/σres,x.
The blue line shows the median analogue to figure 22, the black line shows the ratio
of the beamwidth results from section 4. A strong correlation is observable.

5.2. Spatial distribution of the vertex resolution

In the following analysis the findings of the last section are brought into place, which is the
luminosity region for the vertex ensemble and the particular vertex position for the single event. It
is shown that the average transverse resolution, calculated for area intervals in the 2-dimensional
projections, is not uniformly distributed. In the tranverse plane the probability of finding a vertex
with a lower resolution is higher close to the beamspot than in the outer zones of the interaction
region. Along the beamline, the distribution of the longitudinal resolution is close to uniform
distribution and does not show similar effects. Because the longitudinal resolution is neglectable
in the attempt to correct the beamwidth from the intrinsic vertex resolution, it is not analysed in
detail here. The focus is set on the transverse resolution.
To evaluate the distribution of the average local resolution, the events of run 184169 are used to
fill two 2D-histograms. One is filled with weights wevent = 1, so that it counts the events that
are sorted into each bin respectively into each area interval Ai, j. The same binning is applied
to both histograms with equidistant bin ranges along both axes, so that

∣∣Ai, j
∣∣= ∆x ·∆y = const.

The second histogram is filled with the same events with weights wevent = σ2
res,event . That way a

bin with Ni, j entries holds the bin content of ∑
Ni, j
k=0 σ2

res,k. Dividing this histogram bin-wise by the
first histogram gives the average variance in the area Ai, j. With a view on the comparability with
the scale of the luminosity region the square root of the average variance is calculated and set as
the bin content to show the average local resolution. Some bins in the edges of the coordinate
window have no entries and the division evaluates to NaN, in which case the bin content is set to
zero.
Figure 27 shows the distribution of the average local resolution in the transverse projection
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5.2 Spatial distribution of the vertex resolution

divided into two plots which show the distribution of the local average transverse resolution and
the local average longitudinal resolution. Since it is indicated from the trend shown in figure
24 that the transverse resolution depends on the longitudinal resolution, the similarity of both
plots is expected. Both distributions show that the average local resolution is lower close to the

Figure 27: The left plot shows the average local transverse resolution σ̄res,x,y =
4
√

¯Varx· ¯Vary ,
the right plot shows the average local longitudinal resolution σ̄res,z, both calculated as
averages within the bin. The distributions are symmetrical to the beamline, the mean
evaluates to the same coordinates as in the unweighted distribution. The average
resolution in the mean region is lower than in the outer regions. The axes are set to
x̄, ȳ±4σx,y.

beamline and systematically increases with distance. Outliners in the region further afar than 3σ

tend to have a lower resolution and bring discontinuity into the mix. Both plots are symmetrical
in the transverse directions. It is observed that with a standard deviation of σ̄res,x,y ≈ 17 µm the
local transverse resolution in the area around the beamspot is noticeably lower than in the zones
with a distance from the beamline of 2-3 times σobs,x,y, where it is σ̄res,x,y ≈ 13 µm. Similarly,
the average local longitudinal resolution amounts to about 60 µm in the region close to the
beamline and 40-50 µm in a distance of 2-3 σx,y.
Figure 27 shows that the symmetry found in the distribution of the local average transverse
resolution is the result of a superposition of the two orthogonal symmetric distributions in the
particular transverse directions. The observed effect underlying this superposition is the increase
of the resolution with distance from the beamline along the given axis. Figure 28 shows the
distribution of the average local resolution for both transverse axes in the transverse plane. Figure
29 shows this effect along the length of the interaction region. There is no noticeable change
along the beamline.
Looking at the plots in figures 28 and 29, the visual effect is stronger in the y-direction, where

both the size of the luminosity region and the average standard deviation based on the resolution
are smaller than in x-direction. To examine the amount of the variation for both transverse axes,
this is examined further by the calculation of the average local resolutions σ̄res,x as a function of
the x-coordinate and σ̄res,y as a function of the y-coordinate. The result of this analysis is shown
in the profile plots in figure 30.
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5.2 Spatial distribution of the vertex resolution

Figure 28: The left plot shows the average local transverse resolution σ̄res,x , the right plot shows
the average local transverse resolution σ̄res,y, both calculated as averages within
the bin. The symmetry with the beamspot observable in figure 27 is replaced by a
symmetry along the particular axis.

Figure 29: The left plot shows the average transverse resolution σ̄res,x in the x-z-plane, the
right plot shows the average local transverse resolution σ̄res,y in the y-z-plane, both
calculated as averages within the bin. The symmetry with the particular transverse
direction observable in figure 28 is observed along the whole longitudinal range of
the luminosity zone.

In both transverse directions the local average resolution varies over a range of about 4 µm,
symmetric with respect to the beamline. The dependence is in good approximation linear except
from the turning area, where the positive slope turns into the negative slope. The found variation
can be characterised descriptively, by dividing the 4 µm difference on the resolution axis by the
4σobs range on the coordinate axis. This leads to a change of the local transverse resolution of
approximately one micrometer per one sigma.
But the parameter gained with more precision is the slope of the linear fit functions. It gives
an opportunity to follow the effect through the examined run sequence. The same behaviour
of the x-resolution along the x-axis and the y-resolution along the y-axis is observed for all
runs, with profiles all analogue to figure 30. These profiles are fitted by linear functions in the
ranges 0.5σobs ≤ |x− x̄| ≤ 3σobs and the slope is calculated as the mean of the absolute values,
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5.2 Spatial distribution of the vertex resolution

to conflate the two values taken from the left and right fit. The result of this computation is
shown in figure 31.

Figure 30: Average local resolution σ̄res,x along the x-axis and σ̄res,y along the y-axis. The linear
fits cover the ranges 0.5σ̄obs ≤ |x− x̄| ≤ 3σ̄obs.
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Figure 31: Range of the local transverse resolution for the examined run sequence. The effect is
observed in all runs. The correlation between the two sequences is +0.23.

The two sequences are not correlated strongly, but an anticorrelation with the observed
beamwidth can be stated with corr(dσ̄res,x/x,x) = −0.31 and corr(dσ̄res,y/y,y) = −0.86 which
suggests that the effect is stronger for runs with lower transverse emittance. Because of this
anticorrelation the slope of the linear trend of lower resolution with less distance to the beamspot
gets larger with a smaller beamwidth, thus the effect of the beamwidth on the range of the resolu-
tion decrease gets somewhat compensated. Of course the found slopes can be multiplied with
any range along the transverse axis in order to find the increase of the average local transverse
resolution. The average slope in x-direction for the sequence of the examined runs is 0.061, the

45



5.3 Vertex resolution as a function of the number of tracks

slope for the y-direction is 0.067. Along both axes this gets an increase of the resolution of 1.3
micrometer per sigma.
In longitudinal direction there is no comparable effect. Figure 32 illustrates that the longitudinal
resolution is flat along the z-axis until it reaches the 3-4 σz-zone, where it spreads out and scatters
strongly because of statistical fluctuations. Of course the effect on the data sample is low, since
it is expected to affect less than 0.27% of the events.

Figure 32: Local longitudinal resolution variation along the z-axis. In longitudinal direction
there is no comparable effect. The resolution is uniformly distributed. In the outer
zones of the interaction there are outlyers with lower resolution.

The reason for the higher probability that a vertex with lower resolution is located close to
the mean than in some distance cannot be definitely determined here. Since the plots show
the resolution dependent on the location, both parameters could influence the distribution. A
look at the spatial distributions in figure 17 recalls that the observed distribution varies from the
suggested normal distribution around the mean. Together with the findings in this section, it is
imaginable that the tracking algorithm weighs the information about the position of the beamspot
higher in relation to the perigees, when the resolution is lower and thus such vertices are shifted
towards the beamline.

5.3. Vertex resolution as a function of the number of tracks

The vertex resolution has been examined with a view on the absolute values in section 5.1 and
with a view on the spatial structures in section 5.2. In this section the resolution is reviewed
as a function of the track multiplicity and the meaning of the findings for the observed vertex
distribution is discussed. The resolution is not distributed uniformly along the track multiplicity
axis, but is clearly a function of the number of tracks that are fitted into the vertex.
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5.3 Vertex resolution as a function of the number of tracks

The distribution of the track multiplicity has a Poissonian shape and is very consistent throughout
all examined runs. In figure 33 this distribution is shown for run number 184169. The bin range
covering the RMS interval holds 70.1% of the events, 13.8% have fewer than 23 tracks and
16.1% have at least 63 tracks. A small number of 223 vertices have even more than 150 tracks
and are sorted into the overflow bin of the histogram.
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Figure 33: Distribution of the track multiplicity. The filled area represents the bins covering the
RMS-range.

In figure 34 the resolution is shown as the bin-wise computed square root of the average
variance and the beamwidth is shown as the bin-wise standard deviation of the vertex distribution.
The pathway of the resolution is monotone decreasing and slowly approximating a lower
boundary. This is observed in all examined runs. Seen from the other way, one can observe that
following the track multiplicity axis from the distribution mean of 42 tracks in the direction of a
descending number of tracks, not only does the resolution get lower, but the vertices also appear
to close ranks, showing a descending beamwidth. This is consistent with the findings of section
5.2 where it has been indicated that vertices with a lower resolution have a higher probability to
be found close to the beamline. The distribution of the beamwidth along the track multiplicity
axis reaches a plateau in the range of 70 to 100 tracks, but this is located in the tail of the track
distribution, where the bins contain less than 20% of the vertices.
It appears reasonable that the resolution gets lower with less tracks and thus less information
about the vertex. But the proton-proton collisions cannot be expected to systematically produce
less tracks in the region close to the mean, thus the observation that the beamwidth decreases
with fewer tracks confirms the indication that vertices with lower resolution are located closer to
the beamline systematically. This suggests that applying a cut to the data set by disregarding
vertices with a low number of tracks might flatten the distribution of the average local resolution
shown in the figures in section 5.2 and even lead to a better agreement of the observed vertex
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5.3 Vertex resolution as a function of the number of tracks

distribution and their Gaussian fits shown in figure 17. A brief look at distributions obtained with
an improved vertex selection is presented in section 6.
In the upper domain of the track multiplicity axis it is observed in all runs that the positions

Figure 34: Profile plots for the observed beamwidth and the vertex resolution as functions of the
number of tracks per vertex. Evaluation for run 184169. The plots for the x-direction
and the y-direction have a µm-scale, the plot for the z-direction has a mm-scale.

of just the vertices that are assigned to a good resolution show noticeable deviations from the
distribution mean, as shown in figure 35. This corresponds to the dominant visual impression
in figure 34, where a considerable beamwidth increase occurs in the upper bins. But it has to
be kept in mind that in this domain the statistics are getting worse as in the bins above 100
tracks there are alltogether less than 1% of the events; in the bins above 120 tracks this decreases
down to about 0.1% of events. However, besides the cut at a lower boundary, this suggests to
determining the beamwidth by also applying a cut at 90-100 tracks. For run number 184169, this
cut disregards about 2% of the events.
Figure 34 shows the same discontinuity for high numbers of fitted tracks in the bins with low
statistics for the longitudinal coordinate, too. The observed length of the luminosity region is
about 10 mm higher for bins with a low track multiplicity. But different from the transversal
directions, it is observed that the function of the length of the luminosity region is basically
monotonically decreasing with a higher track multiplicity. The functions in all three directions
are found to follow the same pattern in all examined runs. This is likely to be caused on an
effect brought into the process due to the reconstruction, since it is less probable, that the real
beamwidth is a function of the number of tracks.
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5.3 Vertex resolution as a function of the number of tracks

Mean    42.76
Mean y  ­0.04097

RMS     19.37
RMS y  0.02083

Number of tracks per vertex
50 100 150

x
 i
n

 m
m

­0.06

­0.05

­0.04

­0.03

Mean    42.76
Mean y  ­0.04097

RMS     19.37
RMS y  0.02083

Run 184169 Mean x

Mean    42.76
Mean y  ­0.04097

RMS     19.37
RMS y  0.02083

Mean    42.76
Mean y   1.069

RMS     19.37
RMS y  0.01889

Number of tracks per vertex
50 100 150

y
 i
n

 m
m

1.055

1.06

1.065

1.07

1.075

1.08

1.085
Mean    42.76
Mean y   1.069

RMS     19.37
RMS y  0.01889

Run 184169 Mean y

Mean    42.76
Mean y   1.069

RMS     19.37
RMS y  0.01889

Mean    42.76
Mean y   ­6.03

RMS     19.37
RMS y   60.49

Number of tracks per vertex
50 100 150

z
 i
n

 m
m

­60

­40

­20

0

20

40

Mean    42.76
Mean y   ­6.03

RMS     19.37
RMS y   60.49

Run 184169 Mean z

Mean    42.76
Mean y   ­6.03

RMS     19.37
RMS y   60.49

Figure 35: Trend of the bin-wise beamspot position vs. track multiplicity. The range on the
y-axis represents the σ -range found by evaluating the whole data set, the red line
represents the beamspot found in the same evaluation.

As an attempt to trace the vertices in the upper domain of the track multiplicity axis they are filled
into a histogram of their own. The result, shown in figure 36, indicates, that the discontinuity
discussed for the plots in figure 34 may be caused by unprecise fitting and mean finding due to
the low statistics in the upper bins, as there is no broader beamwidth to be confirmed.

Figure 36: Histogram of the points with a track multiplicity of Ntrks ≥ 100
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6. Vertex resolution correction

In this section the findings of section 4 and 5 are used to adapt methods to estimate the real size
of the luminosity region. Of course, it is not possible to erase the limitations due to measurement
precision from the data set entirely, thus a rest uncertainty will remain in any case, regardless of
the strategy used. But the high relative size of the standard deviation brought into the process
by the resolution suggests that a statistical estimation can achieve an improvement, since the
real beamwidth appears to differ noticeably from the observed beamwidth. In section 6.1 a brief
look at the idea of selecting qualified subsets of the vertex population is given. The method of
subtracting the resolution quadratically from the observed beamwidth is addressed in section 6.2
and basic strategies of data denoising are applied to the problem in section 6.3.

6.1. Avoiding low resolution

A logical approach to improve the observation is to apply a sample design strategy with respect
to minimizing the blurring that is brought into the analysis by vertices which are assumed to
disturb the picture more than others. The most intuitive strategy is to avoid vertices that feature a
low intrinsic resolution. As a consequence of the analysed spatial distribution of the resolution
examined in section 5 the rather counter-intuitive expectation is that this cut leads to a broader
observed beamwidth. In addition to this selection criterion the suggested cut in the lower domain
of the track multiplicity axis should be dispensable, since it strongly correlates with the low
resolution. The one in the higher domain of the track multiplicity axis is not expected to show a
noticeable effect on the outcome, since it affects only a small number of events.
Thus the first series of evaluations presented here selects vertices such that the resolution in
all three spatial dimensions is tested to be lower than the average resolution in that particular
direction plus one times the RMS of the set of resolution values in that direction. All vertices that
exceed this boundary in any of the components are rejected from the sample. For run 184169
this cut rejects vertices with σres,x > 20 µm or σres,y > 19.1 µm or σres,z > 66.6 µm.
The results agree with the expectations as demonstrated in figure 37. The distinctness varies

from run to run, some still show a smaller deviation from a perfectly normal distribution some
are really well fitted. The better agreement of the model and the observation after the selection
indicates that in the sample including the low resolved vertices the underlying reason for the
difference between both is likely not to be the model, but in that case the observation.
Of course a sample design strategy is an arguable issue, since it is always likely to include an
unexpected bias, but in this case a bias is removed. This is examined here by looking at the
distributions of a sample that selects by the track multiplicity. This second selection examined
rejects all events with a track multiplicity outside of the RMS-range of the particular run. The
result is shown in figure 38. The accumulation of events around the mean is slightly reduced, but
the effect is significantly smaller than the one of the selection deciding by resolution. By just
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6.1 Avoiding low resolution

Figure 37: Distribution along the axes of the rotated coordinate system before and after rejecting
low resolved vertices. The columns show the x-, y- and z-direction. The first row
shows the whole data set, the observation differs from the model around the mean
in the transverse directions. The second row shows the preselected data set, the
difference is reduced.

looking at the Gaussian fits, it is clear that the cut rejecting low resolved vertices is preferable to
the cut that rejects events by low or high track multiplicity.

Figure 38: Distribution along the axes of the rotated coordinate system for only those vertices
which have a track multiplicity within the RMS range of 23≤ Ntrks ≤ 63. This cut
has less effect on the shape of the histogram than the limitation of the resolution.

The beamwidth was measured using the Gaussian fits for both selections throughout all ex-
amined runs. Figure 39 confirms the evaluation of the histograms in figures 37 and 38 as the
beamwidth measured on the sample that was selected by resolution increased in both transversal
directions. In the longitudinal direction the measured beamwidth has decreased due to the sample
selection which indicates that the resolution is becoming worse with longitudinal distance from
the interaction point.
The selection that limited the used events to the RMS range of the track multiplicity does not show
a comparable result and actually even lowered the measured beamwidth in all three directions.
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6.2 The mean estimation
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Figure 39: Found beamwidth for the whole dataset and the two examined selections. The blue
line shows the cut that rejects events with a resolution that exceeds the average
resolution plus one time the resolution RMS. The red line shows the selection that
rejects events with a track multiplicity outside the RMS-range of the track multiplicity
distribution .

In this context this demonstrated the likelihood of introducing a bias by using a sample design
strategy. It further shows that the whole effect of the accumulation of low resolved vertices
cannot be reversed by relying on the correlation between low resolution and a low number of
tracks.

6.2. The mean estimation

The intuitive mathematical strategy to correct the beamwidth is based on equation 6, that can be
rearranged to equation 32.

σ̄real =

√
σ̄2

obs− σ̄2res (32)

The adaption of this equation is limited to sets of vertices. The idea of treating its distance to
the mean, the residual, of the single vertex as its particular standard deviation fails to describe
the physical background, as vertices that have the average interaction point lying within their
confidence ellipsoid would cause equation 6.2 to map into the complex plane. Furthermore equa-
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6.3 Deconvolution

tion 32 was derived from the assumption that each sigma is a parameter of a normal distribution
(see section 2.3.3), but for the single vertex this only applies to the average interaction point
that is based on the whole sample, but not to the particular residual. The situation that vertices
with lower resolution have a higher probability to be located close to the mean complicates
the problem, since their σ2

res is high and their residual (x− x̄)2 can be expected to be low with
increased probability.
The bin-wise adaption of equation 32 in bins of track multiplicity is also observed to be trouble-
some by recalling figure 34 and looking at the range in the lower domain of the track multiplicity
axis. The range that has to be excluded to avoid complex numbers reaching into the RMS-range
of the track multiplicity distribution. In the range where the calculation starts to give real results,
small changes of the beamwidth and resolution lead to big changes in the corrected beamwidth.
In the region where the observed beamwidth forms a plateau the application of equation 6.2
looks much more reasonable, thus it is used here only as an estimator including all points by
calculating the averages of the preselected sample.

Figure 40: Bin-wise adaption of equation 32 along the track multiplicity axis. The means are
calculated along the interval 35≤ Ntrks ≤ 100. The left plot shows the x-direction,
the right plot the y-direction.

However, using equation 32 to estimate the real beamwidth with the results of the whole
sample corresponds to the convolution of the resolution and the real vertex distribution and since
it has been shown in the last section that the observed beamwidth using the cut rejecting low
resolved vertices is normally distributed in very good approximation, this confirms this strategy.
On the other hand, however it has been shown that the resolution is not standard distributed,
which somewhat questions the applicability of the derivation in section 2.3.4. The evaulation of
this method is given in figure 43, together with the evaluation of the other methods.

6.3. Deconvolution

The estimation of the real beamwidth as computed in the last section relied on the average
standard deviations and the average resolution. Thus the gained information is valid for the
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whole picture, but cannot be applied to the single events. The methods examined in this section
can be seen as mappings which allow the following of each point through the process and the
observation of the corrected position for each entry. The characteristic functions of the observed
distributions are calculated, which are the Fourier transformed, since the distributions are discrete.
Following the convolution theorem the convolution of the distributions of the real vertices and the
resolution is equivalent to a multiplication in the frequency domain. Deconvolution by inverting
this multiplication is referred to as inverse filtering.
This technique is applied by deblurring algorithms in image restoration which can in some sense
be compared to the given problem [20]. A more sophisticated variant of this method is the
Wiener filter which additionally considers the signal-noise-ratio in the frequency domain and
systematically weighs by that calculation. Both algorithms are applied to the data sets here, but
due to time limitations and issues with NumPy which memory leaks DFT coefficients, only the
Wiener filter was examined for the whole run sequence.

6.3.1. Inverse filter

The inverse filter takes advantage of the convolution theorem and is probably the first intuitive
mathematical approach to the inverse problem. The Fourier transformation can express the data
set as a sum of periodic complex functions which equals the data at the measurement points
and is complex otherwise. The discrete Fourier transformation finds the coefficients fk for the
periodic functions in the sum of

Fn =
N−1

∑
k=0

fke−2πin k
N

where νk =
k
N are the frequencies corresponding to the dataset in the position-space. The inverse

transformation is given by

fk =
1
N

N−1

∑
n=0

Fne2πik n
N

The filtering is realised here to the unbinned data which can be interpreted as a discrete set
of pairs of the evaluations of the both distributions, the resolution and the observed vertex
distribution. Thus the data represents i = 1, . . . ,N evaluations (xi,σres,xi) =

(
fobs,i, fres,i

)
of

fobs(x) = freal(x)∗ fres(x)

Using the discrete Fourier transformation this gets a multiplication of the characteristic functions
of the probability distributions.

Fobs(v) = Freal(v) ·Fres(v)

Dividing at this stage is not necessarily safe, since Fres(v) can have frequencies with Fres(vi)≈ 0,
which would lead to problematic results obtaining very high absolute values for Freal(vi). Thus a
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high pass on Fres(v) is an important step to bear in mind, but in the given data sets |Fres| has been
tested not to exceed a range of O(10−4−104) and was divided without either high or low pass.
The inverse DFT gets

freal,est(xi) = iDFT
(

Fobs(vi)

Fres(vi)

)
Of course this is limited by the fact, that the given values for σres,xi are only estimators for the
resolution.
The computation was done using NumPy.fft for the DFT and iDFT. The result is shown in
figure 41, where the distribution before and after the inverse filtering can be compared. The
beamwidth is reduced to σinv,x = 13.23 µm and σinv,y = 11.71 µm, which corresponds to 63.5%
of the observed beamwidth in x-direction and 62.1% of the measured beamwidth in y-direction.

Figure 41: The deconvolution by the inverse filter produces a data set with a significantly
contracted beam profile. Since it shifts points such that the result is centred at the
origin, the point distribution is translated back into the average interaction point after
the deconvolution.

6.3.2. Wiener filter

The Wiener filter applies basically the same concept, but introduces an additional approach to
weigh the frequencies by their signal-to-noise-ratio SNR. It depends on uncorrelated signal and
noise, here the discrete sequence of the measured points and the disturbance by the resolution
limitation. As has been shown there are some correlations between the spatial distribution and
the measurement precision, but these are small enough to apply the Wiener filter. The Pearson
coefficient for the vertex coordinates and the resolution evaluates to

∣∣corr(x,σ2
res,x)

∣∣< 0.01 in
all three directions. Provided that xobs,i = xreal,i +σres,i, where the addition is compensated for
by the symmetry of the luminosity region, in the frequency domain an estimator is searched to
minimize the least square error.

∑
i

(
Freal,i−Hi ·

(
Freal,i +Fres,i

))2→Min (33)
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Minimizing this expression and using that the correlation between Freal and Fres is approximately
zero gets equation 34, where Φxx is the autocorrelation function of the coordinate sequence and
Φrr is the autocorrelation function of the resolution sequence [20].

Freal,est = H ·Fobs =
(|Fobs|)2

Φxx

(|Fobs|)2
Φxx +Φrr

(34)

Dividing by Φxx gets the term Φrr/Φxx added to the denominator, which becomes large for a bad
NSR and thus lowers the frequency, and becomes small for a good NSR letting the filter behave
neutral since the fraction approximates 1. The inverse DFT gets the filtered sequence.
The Wiener filter is used as a function provided by SciPy.signal.signaltools here and performed
on the coordinate sets of the analysed data.

Figure 42: The deconvolution by the Wiener filter also significantly contracts the beam profile.
The Wiener filter does not shift the points like the inverse filter, the means in both
directions are the same after the deconvolution.

The beamwidth is contracted by the deconvolution using the Wiener filter to 57.0% in x-
direction and 58% in y-direction. The results for all runs are shown in figure 43, in order to
compare the estimation by the quadratical subtraction and the deconvolution using the Wiener
filter. The Wiener filter gives lower results in x-direction, in y-directions both methods show less
difference. The average beamwidth found by the Wiener filter is 12.3 µm in x-direction and 11.1
µm in y-direction. In y-direction the estimation evaluates to the same average beamwidth for the
whole run sequence. In x-direction the estimation using equation 32 gets 13.7 µm. The runs
evaluated using the inverse filter have values that are of the same order. The Wiener filter applies
a more sophisticated strategy to the problem that takes all events into acount. There are ways to
apply an error estimation to this process, but this cannot be examined here due to the limited
time.
Since both methods evaluate to comparable values, both decreasing the beamsize significantly,
the expected confirmation can be given, that the real size of the luminosity zone significantly
lower than the observed beamsize.
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Figure 43: Comparison of the corrected beamwidth using the deconvolution with the Wiener
filter and the estimation by quadatratic subtraction. The left plot shows the x-
direction; the right plot shows the y-direction.

7. Distribution of the pile-up events

The average amount of interactions per bunchcrossing was 5-6 at the time of the examined run
sequence. The analysed data sets have a corresponding number of additional vertices per event.
An intuitive idea is at first hand to include these vertices into the distributions in order to get a
better statistic. A brief discription shall be given here to explain that the pile-up events cannot be
used to measure the size of the beamwidth. Even applying a very strict selection is not likely to
get any agreement of the distribution of the primary vertices and the pileup events. Measuring
the beamwidth by only taking the pileup events into acount gives a very different picture as
figure 44 illustrates. Both transverse beamwidths measured in the distributions of the pileup
vertices are smaller than 10 µm. But in the longitudinal direction the beamwidth of the pileup
distribution differs less than 3% from the one of the primary vertices.

This observation can be explained by the results of section 5. Following their lower average
resolution, the transverse location of the pileup vertices is traced with significant less precision,
which lets them appear as being located closer to the mean in the observation. Since the
analysis showed as well that vertices with fewer tracks do in average have a lower resolution, the
comparison of the track multiplicity complies with the analysis as well.

The RMS range for the track multiplicity of the pileup vertices is Ntrks = 14± 13. The
correlation of this domain on the track multiplicity axis and a low resolution has been shown in
the dicussion of figure 34. Thus a further analysis of the spatial distribution of the transverse
vertex coordinates of the pileup events is dispensable, since it is not likely to have a good
agreement between the observation and the real distribution of the pileup vertices. One has to
keep in mind, that the tracking process has microseconds to analyse the bunch crossing, thus
the distinction of the pileup vertices from the primary event by buiding clusters with respect to
their z-coordinates is efficient enough and the pileup vertices don’t need to be better resolved.
However, they cannot count as an indication of the size of the luminosity region.

57



Figure 44: Distribution of the primary events (left) and the pileup events (right). The fit function
for the primary events is always as well shown on the right side, to provide a better
comparison.
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Figure 45: Track multiplicity for run 184169 for primary and pileup vertices. The curve of the
fit of the primary vertices is added to the distribution of the pileup vertices, in order
to provide comparability.
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8. Conclusions

In this section a summary of the results is given as well as a brief discussion of the advantages
and disadvantages of the analytic procedure presented in this thesis. The limitations of this thesis
are addressed and an outline of topics for further work on the subjects “size of the luminosity
region” and “vertex resolution” is given.

8.1. Summary

This thesis provides a detailed analysis of the structure of the luminosity region of the ATLAS
detector. This includes a discussion of the measurement precision, which deepens the under-
standing of the observed vertex distribution. The findings were validated using a sequence of 23
runs which gave a good opportunity to find correlations between different observations and to
confirm the central topics.
It has been found that the resolution of the vertex reconstruction correlates with the beam width
such that a run with smaller beamwidth can be expected to produce a data set with a better
average resolution. This has been found in both of the transverse directions and it has been shown
that not only the beamwidth was smaller in the vertical direction than in the horizontal direction,
but the average standard deviation assigned to each event due to its resolution correlates with
this and was also smaller in the vertical direction in all examined runs.
The spatial distribution of the average local resolution in the luminosity region has been anal-
ysed in detail and it is understood that the accumulation of vertices which is observed in the
one-dimensional transverse distributions is related to the vertex resolution. It has been shown
that a selection rule that rejects low resolved vertices can reverse parts of this effect and can be
expected to lead to the choosing of a subset that has a better agreement with the assumption
of a normal distribution of the events in the luminosity region. This has been compared with
the distribution along the track multiplicity axis and it is understood, why the distribution of
the bin-wise observed beamwidth decreases with low track multiplicity as the average standard
deviation due to the resolution increases in those subsets.
Ways to correct the observation from the resolution limitation have been examined and an
estimation of the real vertex distribution could be derived from the analysis.

8.2. Discussion

The determination of the beamwidth was realised by applying Gaussian fits to the data, which
means additional work for not necessarily better results. One could also deploy the computational
formula for the variance that is implemented in most working environments. However, in that
case it is recommended not to compute on the whole dataset without any test for outliers, since
the underflow and overflow buffers of the histograms were never unfilled.
The efficiency of the coordinate system rotation is low and the simplified variant of the used
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matrix should be sufficient as long as there is no significantly higher tilt. The computation takes
CPU time and the results have to be stored separately in order to avoid the frequent repetition of
the process. It may be of further interest to measure the beamwidth with a parallel orientation to
the beamline, although an analysis of the measurement precision of the detector might in turn be
better carried out in the detector’s coordinate system.
A main issue discussed in this thesis is the observed shifting of points with low resolution
towards the beamline by the HLT fit process. The observation was based on the computation
of the resolution from the perigees by calculating their covariance. An improvement to this
method is presented by [16], using the split vertex method. This method aims to minimize the
confidence interval that the resolution represents by dividing the group of tracks for a given
vertex iterativly into two half-sets and finding the position of these half-vertices. This method is
likely to be capable of reducing the suggested effect of a backlink of the computed beamwidth
into the resolution values.
The suggested and analysed sample design strategies were only roughly evaluated by looking at
the histograms. When testing sample designs and selection criteria, the χ2-test should be used to
express a comparable parameter. This was just observed in the computing shell window, but not
used as a criterion to evaluate the effects of the sample selections for the runsequence. However,
more reliable results could be achieved by examining this more thoroughly.
The resolution correction by deconvolution goes the path of the inverse problem which is probably
not the best strategy provided reliable prior information about the real vertex distribution. A
Bayesian analysis which goes forward through the convolution and minimizes the loglikelihood
function to find the best estimator for the real vertex distribution is likely to provide good results
on estimating the real size of the luminosity region.

8.3. Future work

It is of great interest to examine the distribution of the vertex resolution as it is correlated with
the vertex distribution. As discussed in section 2.3.2 there are additional offline vertex finding
algorithms in place. A study which applies the analysis given in section 5 to those algorithms
may obtain new conclusions.
It has been shown that sample design strategies should be well thought through and there are a
lot of interesting evaluations to carry out by applying selection rules and analysing the effect on
the observation.
Very interesting would be an attempt to do a Bayesian analysis in order to find the corrected
beamwidth. Its distribution can be easily estimated with good approximation, since the real
standard deviation of the assumed normal distribution of the events in the luminosity region is
the only parameter that is unknown. There is a huge set of sophisticated methods about statistical
estimation as well as about strategies solving the inverse problem, that could be deployed to the
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measuring of the luminosity region. In this thesis only the most common approaches to this topic
have been examined.
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A. Appendix

A.1. Collections of plots for all 23 runs
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Figure 46: Beamspot mean in y-direction taken in 100 intervals along the z-axis. The slope of
the fitted linear function represents the y-tilt of the beamline. The drawn intervals
show a range of ±2σ around the mean on both axes.
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A.1 Collections of plots for all 23 runs
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Figure 47: Distribution of number of tracks per vertex for all runs
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A.1 Collections of plots for all 23 runs
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Figure 48: Observed beamwidth and resolution in x-direction vs. number of tracks. Collection
for all runs.

V



A.1 Collections of plots for all 23 runs
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Figure 49: Observed beamwidth and resolution in y-direction vs. number of tracks. Collection
for all runs.
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A.1 Collections of plots for all 23 runs

Figure 50: Local transverse resolution σres,x along the x-axis.
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A.1 Collections of plots for all 23 runs

Figure 51: Local transverse resolution along the y-axis.
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A.1 Collections of plots for all 23 runs

Figure 52: Distribution in x-direction after rejecting vertices with low resolution.
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A.1 Collections of plots for all 23 runs

Figure 53: Distribution in y-direction after rejecting vertices with low resolution.

X



A.1 Collections of plots for all 23 runs

Figure 54: Distribution in the x-y-plane after the Wiener filter.
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